Nonalcoholic fatty liver disease (NAFLD) is the most common form of liver pathologies and is associated with obesity and the metabolic syndrome, which represents a range of fatty liver diseases associated with an increased risk of type 2 diabetes. Molecular mechanisms underlying how to make transition from simple fatty liver to nonalcoholic steatohepatitis (NASH) are not well understood. However, accumulating evidence indicates that deregulation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway in hepatocytes is a common molecular event associated with metabolic dysfunctions including obesity, metabolic syndrome, and the NAFLD. A tumor suppressor PTEN negatively regulates the PI3K/AKT pathways through its lipid phosphatase activity. Molecular studies in the NAFLD support a key role for PTEN in hepatic insulin sensitivity and the development of steatosis, steatohepatitis, and fibrosis. We review recent studies on the features of the PTEN and the PI3K/AKT pathway and discuss the protein functions in the signaling pathways involved in the NAFLD. The molecular mechanisms contributing to the diseases are the subject of considerable investigation, as a better understanding of the pathogenesis will lead to novel therapies for a condition. 1. Introduction Nonalcoholic fatty liver diseases (NAFLD) represent a hepatic metabolic syndrome, which is the common broad-spectrum liver disease, and it is becoming a worldwide health problem. NAFLD ranges from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH), which often precedes liver fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD is also associated with obesity, type 2-diabetes, and metabolic syndrome [1–5]. Insulin resistance appears to induce the fat accumulation in hepatocytes and renders the liver more susceptible to diseases [6]. In addition, reactive oxygen species (ROS), endotoxins, and inflammatory cytokines result in the disease development [7]. It is also well known that several stressors like cigarette smoke, pollutants, diabetes, hypertension, and hypercholesterolemia are all risk factors to the disease [8, 9]. The hepatic insulin resistance state of fatty liver infiltration is characterized by increased free fatty acids (FFAs), which causes lipotoxicity, impairs endothelium-dependent vasodilatation, and increases oxidative stresses. Additional metabolic risk factors include leptin, adiponectin, and plasminogen activator inhibitor-1 (PAI-1), which together lead to increased oxidative stress and endothelial dysfunction [10]. Inflammation and fibrogenesis are closely related and
References
[1]
M. R. Souza, F. Diniz Mde, J. E. Medeiros-Filho, and M. S. Araújo, “Metabolic syndrome and risk factors for non-alcoholic fatty liver disease,” Arquivos de Gastroenterologia, vol. 49, no. 1, pp. 89–96, 2012.
[2]
Y. Yilmaz, “NAFLD in the absence of metabolic syndrome: different epidemiology, pathogenetic mechanisms, risk factors for disease progression?” Seminars in Liver Disease, vol. 32, no. 1, pp. 14–21, 2012.
[3]
A. Alisi, A. E. Feldstein, A. Villani, M. Raponi, and V. Nobili, “Pediatric nonalcoholic fatty liver disease: a multidisciplinary approach,” Nature Reviews Gastroenterology & Hepatology, vol. 9, no. 3, pp. 152–161, 2012.
[4]
D. Shyangdan, C. Clar, N. Ghouri, et al., “Insulin sensitisers in the treatment of non-alcoholic fatty liver disease: a systematic review,” Health Technology Assessment, vol. 15, no. 38, pp. 1–110, 2011.
[5]
B. W. Smith and L. A. Adams, “Non-alcoholic fatty liver disease,” Critical Reviews in Clinical Laboratory Sciences, vol. 48, no. 3, pp. 97–113, 2011.
[6]
F. R. Jornayvaz and G. I. Shulman, “Diacylglycerol activation of protein kinase Cε and hepatic insulin resistance,” Cell Metabolism, vol. 15, no. 5, pp. 574–584, 2012.
[7]
X. Chen, C. Zhang, M. Zhao, et al., “Melatonin alleviates lipopolysaccharide-induced hepatic SREBP-1c activation and lipid accumulation in mice,” Journal of Pineal Research, vol. 51, no. 4, pp. 416–425, 2011.
[8]
A. Mallat and S. Lotersztajn, “Cigarette smoke exposure: a novel cofactor of NAFLD progression?” Journal of Hepatology, vol. 51, no. 3, pp. 430–432, 2009.
[9]
T. D. Filippatos and M. S. Elisaf, “Role of ezetimibe in non-alcoholic fatty liver disease,” World Journal of Hepatology, vol. 3, no. 10, pp. 265–267, 2011.
[10]
E. Fitzpatrick, T. K. Dew, A. Quaglia, R. A. Sherwood, R. R. Mitry, and A. Dhawan, “Analysis of adipokine concentrations in paediatric non-alcoholic fatty liver disease,” Pediatric Obesity, vol. 7, no. 6, pp. 471–479, 2012.
[11]
C. Garcia-Ruiz, M. Marí, A. Colell, A. Morales, and J. C. Fernandez-Checa, “Metabolic therapy: lessons from liver diseases,” Current Pharmaceutical Design, vol. 17, no. 35, pp. 3933–3944, 2011.
[12]
P. Pettinelli, A. M. Obregón, and L. A. Videla, “Molecular mechanisms of steatosis in nonalcoholic fatty liver disease,” Nutricion Hospitalaria, vol. 26, no. 3, pp. 441–450, 2011.
[13]
T. Weichhart and M. D. S?emann, “The PI3K/Akt/mTOR pathway in innate immune cells: emerging therapeutic applications,” Annals of the Rheumatic Diseases, vol. 67, no. 3, pp. iii70–iii74, 2008.
[14]
M. Peyrou, L. Bourgoin, and M. Foti, “PTEN in non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and cancer,” Digestive Diseases, vol. 28, no. 1, pp. 236–246, 2010.
[15]
M. Trauner, T. Claudel, P. Fickert, T. Moustafa, and M. Wagner, “Bile acids as regulators of hepatic lipid and glucose metabolism,” Digestive Diseases, vol. 28, no. 1, pp. 220–224, 2010.
[16]
S. K. Mantena, D. P. Vaughn, K. K. Andringa et al., “High fat diet induces dysregulation of hepatic oxygen gradients and mitochondrial function in vivo,” Biochemical Journal, vol. 417, no. 1, pp. 183–193, 2009.
[17]
R. Gambino, G. Musso, and M. Cassader, “Redox balance in the pathogenesis of nonalcoholic fatty liver disease: mechanisms and therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 15, no. 5, pp. 1325–1365, 2011.
[18]
M. Rocha, R. Herance, S. Rovira, A. Hernández-Mijares, and V. M. Victor, “Mitochondrial dysfunction and antioxidant therapy in sepsis,” Infectious Disorders, vol. 12, no. 2, pp. 161–178, 2012.
[19]
M. Hulsmans, E. van Dooren, and P. Holvoet, “Mitochondrial reactive oxygen species and risk of atherosclerosis,” Current Atherosclerosis Reports, vol. 14, no. 3, pp. 264–276, 2012.
[20]
Z. Y. Li, Y. Yang, M. Ming, and B. Liu, “Mitochondrial ROS generation for regulation of autophagic pathways in cancer,” Biochemical and Biophysical Research Communications, vol. 414, no. 1, pp. 5–8, 2011.
[21]
M. Blandino-Rosano, A. Y. Chen, J. O. Scheys, et al., “mTORC1 signalingand regulation of pancreatic β-cell mass,” Cell Cycle, vol. 11, no. 10, pp. 1892–1902, 2012.
[22]
X. Wang and C. X. Hai, “ROS acts as a double-edged sword in the pathogenesis of type 2 diabetes mellitus: is Nrf2 a potential target for the treatment?” Mini-Reviews in Medicinal Chemistry, vol. 11, no. 12, pp. 1082–1092, 2011.
[23]
K. M. Mellor, R. H. Ritchie, and L. M. Delbridge, “Reactive oxygen species and insulin-resistant cardiomyopathy,” Clinical and Experimental Pharmacology and Physiology, vol. 37, no. 2, pp. 222–228, 2010.
[24]
J. L. Rains and S. K. Jain, “Oxidative stress, insulin signaling, and diabetes,” Free Radical Biology and Medicine, vol. 50, no. 5, pp. 567–575, 2011.
[25]
S. Watanabe, Y. Horie, and A. Suzuki, “Hepatocyte-specific Pten-deficient mice as a novel model for nonalcoholic steatohepatitis and hepatocellular carcinoma,” Hepatology Research, vol. 33, no. 2, pp. 161–166, 2005.
[26]
A. C. Piguet, D. Stroka, A. Zimmermann, and J. F. Dufour, “Hypoxia aggravates non-alcoholic steatohepatitis in mice lacking hepatocellular PTEN,” Clinical Science, vol. 118, no. 6, pp. 401–410, 2010.
[27]
D. J. Mulholland, S. Dedhar, H. Wu, and C. C. Nelson, “PTEN and GSK3β: Key regulators of progression to androgen-independent prostate cancer,” Oncogene, vol. 25, no. 3, pp. 329–337, 2006.
[28]
L. Die, P. Yan, Z. Jun Jiang, T. Min Hua, W. Cai, and L. Xing, “Glycogen synthase kinase-3 beta inhibitor suppresses Porphyromonas gingivalis lipopolysaccharide-induced CD40 expression by inhibiting nuclear factor-kappa B activation in mouse osteoblasts,” Molecular Immunology, vol. 52, no. 1, pp. 38–49, 2012.
[29]
M. Haidinger, M. Poglitsch, R. Geyeregger et al., “A versatile role of mammalian target of rapamycin in human dendritic cell function and differentiation,” Journal of Immunology, vol. 185, no. 7, pp. 3919–3931, 2010.
[30]
R. P. Cherla, S. Y. Lee, R. A. Mulder, M. S. Lee, and V. L. Tesh, “Shiga toxin 1-induced proinflammatory cytokine production is regulated by the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin signaling pathway,” Infection and Immunity, vol. 77, no. 9, pp. 3919–3931, 2009.
[31]
K. Sheppard, K. M. Kinross, B. Solomon, R. B. Pearson, and W. A. Phillips, “Targeting PI3 kinase/AKT/mTOR signaling in cancer,” Critical Reviews in Oncogenesis, vol. 17, no. 1, pp. 69–95, 2012.
[32]
E. Aksamitiene, A. Kiyatkin, and B. N. Kholodenko, “Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance,” Biochemical Society Transactions, vol. 40, no. 1, pp. 139–146, 2012.
[33]
P. T. Hawkins, L. R. Stephens, S. Suire, and M. Wilson, “PI3K signaling in neutrophils,” Current Topics in Microbiology and Immunology, vol. 346, pp. 183–202, 2010.
[34]
I. Hers, E. E. Vincent, and J. M. Tavaré, “Akt signalling in health and disease,” Cell Signaling Technology, vol. 23, no. 10, pp. 1515–1527, 2011.
[35]
T. O. Chan and P. N. Tsichlis, “PDK2: a complex tail in one Akt,” Science's STKE, vol. 2001, no. 66, p. pe1, 2001.
[36]
D. J. Kwiatkowski, “Rhebbing up mTOR: New insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis,” Cancer Biology and Therapy, vol. 2, no. 5, pp. 471–476, 2003.
[37]
Y. Huo, V. Iadevaia, and C. G. Proud, “Differing effects of rapamycin and mTOR kinase inhibitors on protein synthesis,” Biochemical Society Transactions, vol. 39, no. 2, pp. 446–450, 2011.
[38]
E. J. Bae, J. Xu, D. Y. Oh, et al., “Liver-specific p70 S6 kinase depletion protects against hepatic steatosis and systemic insulin resistance,” The Journal of Biological Chemistry, vol. 287, no. 22, pp. 18769–18780, 2012.
[39]
C. Gao, C. H?lscher, Y. Liu, and L. Li, “GSK3: a key target for the development of novel treatments for type 2 diabetes mellitus and Alzheimer disease,” Reviews in the Neurosciences, vol. 23, no. 1, pp. 1–11, 2011.
[40]
N. Okumura, H. Yoshida, Y. Kitagishi, M. Murakami, Y. Nishimura, and S. Matsuda, “PI3K/AKT/PTEN signaling as a molecular target in leukemia angiogenesis,” Advances in Hematology, vol. 2012, Article ID 843085, 6 pages, 2012.
[41]
M. S. Song, L. Salmena, and P. P. Pandolfi, “The functions and regulation of the PTEN tumour suppressor,” Nature Reviews Molecular Cell Biology, vol. 13, no. 5, pp. 283–296, 2012.
[42]
H. Yoshida, N. Okumura, Y. Kitagishi, Y. Nishimura, and S. Matsuda, “Ethanol extract of Rosemary repressed PTEN expression in K562 culture cells,” International Journal of Applied Biology and Pharmaceutical, vol. 2, pp. 316–322, 2011.
[43]
G. Singh and A. M. Chan, “Post-translational modifications of PTEN and their potential therapeutic implications,” Current Cancer Drug Targets, vol. 11, no. 5, pp. 536–547, 2011.
[44]
M. M. Georgescu, “Pten tumor suppressor network in PI3K-Akt pathway control,” Genes and Cancer, vol. 1, no. 12, pp. 1170–1177, 2010.
[45]
Y. M. Li, B. P. Zhou, J. Deng, Y. Pan, N. Hay, and M. C. Hung, “A hypoxia-independent hypoxia-inducible factor-1 activation pathway induced by phosphatidylinositol-3 kinase/Akt in HER2 overexpressing cells,” Cancer Research, vol. 65, no. 8, pp. 3257–3263, 2005.
[46]
J. T. Barata, “The impact of PTEN regulation by CK2 on PI3K-dependent signaling and leukemia cell survival,” Advances in Enzyme Regulation, vol. 51, no. 1, pp. 37–49, 2011.
[47]
B. L. Stiles, C. Kuralwalla-Martinez, W. Guo et al., “Selective deletion of Pten in pancreatic β cells leads to increased islet mass and resistance to STZ-induced diabetes,” Molecular and Cellular Biology, vol. 26, no. 7, pp. 2772–2781, 2006.
[48]
O. Gorbenko, G. Panayotou, A. Zhyvoloup, D. Volkova, I. Gout, and V. Filonenko, “Identification of novel PTEN-binding partners: PTEN interaction with fatty acid binding protein FABP4,” Molecular and Cellular Biochemistry, vol. 337, no. 1-2, pp. 299–305, 2010.
[49]
M. Tsuda, T. Inoue-Narita, A. Suzuki, S. Itami, M. Blumenberg, and M. Manabe, “Induction of gene encoding FABP4 in Pten-null keratinocytes,” FEBS Letters, vol. 583, no. 8, pp. 1319–1322, 2009.
[50]
T. Vellai, D. McCulloch, D. Gems, and A. L. Kovács, “Effects of sex and insulin/insulin-like growth factor-1 signaling on performance in an associative learning paradigm in Caenorhabditis elegans,” Genetics, vol. 174, no. 1, pp. 309–316, 2006.
[51]
L. Wang, Y. Liu, S. Y. Lu et al., “Deletion of Pten in pancreatic β-cells protects against deficient β-cell mass and function in mouse models of type 2 diabetes,” Diabetes, vol. 59, no. 12, pp. 3117–3126, 2010.
[52]
J. T. Wong, P. T. W. Kim, J. W. Peacock et al., “Pten (phosphatase and tensin homologue gene) haploinsufficiency promotes insulin hypersensitivity,” Diabetologia, vol. 50, no. 2, pp. 395–403, 2007.
[53]
A. L. Howes, J. F. Arthur, T. Zhang et al., “Akt-mediated cardiomyocyte survival pathways are compromised by Gαq-induced phosphoinositide 4,5-bisphosphate depletion,” Journal of Biological Chemistry, vol. 278, no. 41, pp. 40343–40351, 2003.
[54]
S. Liu, S. Liu, X. Wang et al., “The PI3K-Akt pathway inhibits senescence and promotes self-renewal of human skin-derived precursors in vitro,” Aging Cell, vol. 10, no. 4, pp. 661–674, 2011.
[55]
K. A. Robinson and M. G. Buse, “Mechanisms of high-glucose/insulin-mediated desensitization of acute insulin-stimulated glucose transport and Akt activation,” American Journal of Physiology—Endocrinology and Metabolism, vol. 294, no. 5, pp. E870–E881, 2008.
[56]
A. Ahluwalia and A. S. Tarnawski, “Critical role of hypoxia sensor—HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing,” Current Medicinal Chemistry, vol. 19, no. 1, pp. 90–97, 2012.
[57]
Y. Li, J. Hai, L. Li, et al., “Administration of ghrelin improves inflammation, oxidative stress, and apoptosis during and after non-alcoholic fatty liver disease development,” Endocrine. In press.
[58]
N. Nakashima, P. M. Sharma, T. Imamura, R. Bookstein, and J. M. Olefsky, “The tumor suppressor PTEN negatively regulates insulin signaling in 3T3- L1 adipocytes,” Journal of Biological Chemistry, vol. 275, no. 17, pp. 12889–12895, 2000.
[59]
H. Ono, H. Katagiri, M. Funaki et al., “Regulation of phosphoinositide metabolism, Akt phosphorylation, and glucose transport by PTEN (phosphatase and tensin homolog deleted on chromosome 10) in 3T3-L1 adipocytes,” Molecular Endocrinology, vol. 15, no. 8, pp. 1411–1422, 2001.
[60]
Y. T. Lo, C. J. Tsao, I. M. Liu, S. S. Liou, and J. T. Cheng, “Increase of PTEN gene expression in insulin resistance,” Hormone and Metabolic Research, vol. 36, no. 10, pp. 662–666, 2004.
[61]
X. Tang, A. M. Powelka, N. A. Soriano, M. P. Czech, and A. Guilherme, “PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/AKT pathway in 3T3-L1 adipocytes,” Journal of Biological Chemistry, vol. 280, no. 23, pp. 22523–22529, 2005.
[62]
B. Stiles, Y. Wang, A. Stahl, et al., “Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 2082–2087, 2004.
[63]
C. D. Byrne, “Hypoxia and non-alcoholic fatty liver disease,” Clinical Science, vol. 118, no. 6, pp. 397–400, 2009.
[64]
N. L. Neubauer, E. C. Ward, P. Patel et al., “Progesterone receptor-B induction of BIRC3 protects endometrial cancer cells from AP1-59-mediated apoptosis,” Hormones and Cancer, vol. 2, no. 3, pp. 170–181, 2011.
[65]
H. Zhou, Y. Luo, and S. Huang, “Updates of mTOR inhibitors,” Anti-Cancer Agents in Medicinal Chemistry, vol. 10, no. 7, pp. 571–581, 2010.
[66]
J. J. Gibbons, R. T. Abraham, and K. Yu, “Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth,” Seminars in Oncology, vol. 36, supplement 3, pp. S3–S17, 2009.
[67]
T. Dal-Cim, S. Molz, J. Egea, et al., “Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3β pathway,” Neurochemistry International, vol. 61, no. 3, pp. 397–404, 2012.