Background. Exercise training intervention is underused in the management of type 2 diabetes mellitus in East Africa. Methods. 41 physically-active males with type 2 diabetes mellitus living in Mozambique were recruited and randomly assigned to 12 weeks of supervised exercise of low intensity exercise (LEX), vigorous intensity exercise (VEX), or to a control group (CON). Since there were no differences for any outcome variables between the exercise groups, VEX and LEX were combined into one exercise group (EX). Results. Age and baseline body weight were similar between EX and CON. Plasma glucose at 120?min following glucose load (Glu 120) was significantly reduced in the EX group after training (Glu 120?:?17.3?mmol/L to 15.0?mmol/L, ), whereas Glu 120 remained unchanged in the CON (Glu 120?:?16.6?mmol/L to 18.7?mmol/L). After controlling for baseline blood pressure (BP), posttraining systolic BP and diastolic BP were lower in the EX group than in the CON group (EX: 129/77?mm?Hg, CON: 152/83?mm?Hg, ). Conclusion. Adding exercise to already active African men with type 2 diabetes improved glucose control and BP levels without concomitant changes in weight. 1. Introduction Diabetes is an increasing cause of morbidity and mortality in Africa. According to the World Health Organization (WHO), in 2000, there were 133,000 known individuals with type 2 diabetes in Mozambique and possibly an equal number of undiagnosed cases. Globally there is a rapid increase in the incidence of diabetes but developing countries have contributed substantially to the increased incidence [1], mainly as a consequence of urbanization [2]. It is projected that, by 2030, the number of people with diabetes will more than double in Mozambique. Urbanization is associated with altered diet and decreased physical activity [2]. Although physical activity levels are declining in developing countries, they are still considerably higher than developed countries, especially in rural areas [3]. In Mozambique, many individuals walk more than one hour per day, as walking is a primary mode of transportation. Exercise is widely prescribed in developed countries as a lifestyle intervention to control glucose and blood pressure (BP) in type 2 diabetic patients [4–7]. Because of their inherent daily physical activity in developing countries, exercise is seldom prescribed to patients with type 2 diabetes. Therefore, little is known if a structured exercise program added to an already active lifestyle would affect glucose control and BP in this population with type 2 diabetes. We hypothesized that a
References
[1]
H. King, R. E. Aubert, and W. H. Herman, “Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections,” Diabetes Care, vol. 21, no. 9, pp. 1414–1431, 1998.
[2]
S. Wild, G. Roglic, A. Green, R. Sicree, and H. King, “Global prevalence of diabetes: estimates for the year 2000 and projections for 2030,” Diabetes Care, vol. 27, no. 5, pp. 1047–1053, 2004.
[3]
T. Alemu and B. Lindtjom, “Physical activity, illness and nutritional status among adults in a rural Ethiopian community,” International Journal of Epidemiology, vol. 24, no. 5, pp. 977–983, 1995.
[4]
K. R. Segal, A. Edano, A. Abalos et al., “Effect of exercise training on insulin sensitivity and glucose metabolism in lean, obese, and diabetic men,” Journal of Applied Physiology, vol. 71, no. 6, pp. 2402–2411, 1991.
[5]
M. Krotkiewski, P. Lonnroth, and K. Mandroukas, “The effects of physical training on insulin secretion and effectiveness and on glucose metabolism in obesity and Type 2 (non-insulin-dependent) diabetes mellitus,” Diabetologia, vol. 28, no. 12, pp. 881–890, 1985.
[6]
S. Lee, J. L. Kuk, L. E. Davidson et al., “Exercise without weight loss is an effective strategy for obesity reduction in obese individuals with and without Type 2 diabetes,” Journal of Applied Physiology, vol. 99, no. 3, pp. 1220–1225, 2005.
[7]
F. Dela, T. Ploug, A. Handberg et al., “Physical training increases muscle GLUT4 protein and mRNA in patients with NIDDM,” Diabetes, vol. 43, no. 7, pp. 862–865, 1994.
[8]
D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985.
[9]
A. Albright, M. Franz, G. Hornsby et al., “ACSM position stand on exercise and Type 2 diabetes,” Medicine and Science in Sports and Exercise, vol. 32, no. 7, pp. 1345–1360, 2000.
[10]
I. M. Stratton, E. M. Kohner, S. J. Aldington et al., “UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis,” Diabetologia, vol. 44, no. 2, pp. 156–163, 2001.
[11]
P. S. Mehler, B. W. Jeffers, R. Estacio, and R. W. Schrier, “Associations of hypertension and complications in non-insulin-dependent diabetes mellitus,” American Journal of Hypertension, vol. 10, no. 2, pp. 152–161, 1997.
[12]
M. Ishihara, Y. Yukimura, and T. Aizawa, “High blood pressure as risk factor in diabetic retinopathy development in NIDDM patients,” Diabetes Care, vol. 10, no. 1, pp. 20–25, 1987.
[13]
W. C. Knowler, P. H. Bennett, and E. J. Ballintine, “Increased incidence of retinopathy in diabetics with elevated blood pressure. A six-year follow-up study in Pima Indians,” The New England Journal of Medicine, vol. 302, no. 12, pp. 645–650, 1980.
[14]
“Tight blood pressure control and risk of macrovascular and microvascular complications in Type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group,” British Medical Journal, vol. 317, no. 7160, pp. 703–713, 1998.
[15]
A. O. Akinpelu, “Responses of the African hypertensive to exercise training: preliminary observations,” Journal of Human Hypertension, vol. 4, no. 2, pp. 74–76, 1990.
[16]
V. A. Cornelissen and R. H. Fagard, “Effects of endurance training on blood pressure, blood pressure-regulating mechanisms, and cardiovascular risk factors,” Hypertension, vol. 46, no. 4, pp. 667–675, 2005.
[17]
L. S. Pescatello, B. A. Franklin, R. Fagard, W. B. Farquhar, G. A. Kelley, and C. A. Ray, “American College of Sports Medicine position stand. Exercise and hypertension,” Medicine and Science in Sports and Exercise, vol. 36, no. 3, pp. 533–553, 2004.
[18]
“Effect of intensive blood-glucose control with metformin on complications in overweight patients with Type 2 diabetes (UKPDS 34),” The Lancet, vol. 352, no. 9131, pp. 854–865, 1998.
[19]
T. Ronnemaa, K. Mattila, A. Lehtonen, and V. Kallio, “A controlled randomized study on the effect of long-term physical exercise on the metabolic control in Type 2 diabetic patients,” Acta Medica Scandinavica, vol. 220, no. 3, pp. 219–224, 1986.
[20]
N. G. Boulé, E. Haddad, G. P. Kenny, G. A. Wells, and R. J. Sigal, “Effects of exercise on glycemic control and body mass in Type 2 diabetes mellitus: a meta-analysis of controlled clinical trials,” Journal of the American Medical Association, vol. 286, no. 10, pp. 1218–1227, 2001.
[21]
A. J. van Rooijen, P. Rheeder, C. J. Eales, and P. J. Becker, “Effect of exercise versus relaxation of haemoglobin A1C in black females with Type 2 diabetes mellitus,” Quarterly Journal of Medicine, vol. 97, no. 6, pp. 343–351, 2004.
[22]
D. E. Kelley and B. H. Goodpaster, “Effects of exercise on glucose homeostasis in Type 2 diabetes mellitus,” Medicine and Science in Sports and Exercise, vol. 33, no. 6, pp. S495–S501, 2001.
[23]
Y. Miyazaki and R. A. DeFronzo, “Visceral fat dominant distribution in male Type 2 diabetic patients is closely related to hepatic insulin resistance, irrespective of body type,” Cardiovascular Diabetology, vol. 8, article 44, 2009.
[24]
F. Dela, A. Handberg, K. J. Mikines, J. Vinten, and H. Galbo, “GLUT 4 and insulin receptor binding and kinase activity in trained human muscle,” Journal of Physiology, vol. 469, pp. 615–624, 1993.
[25]
A. Andersson, A. Sj?din, R. Olsson, and B. Vessby, “Effects of physical exercise on phospholipid fatty acid composition skeletal muscle,” American Journal of Physiology, vol. 274, no. 3, pp. E432–E438, 1998.
[26]
P. Ebeling, R. Bourey, L. Koranyi et al., “Mechanism of enhanced insulin sensitivity in athletes. Increased blood flow, muscle glucose transport protein (GLUT-4) concentration, and glycogen synthase activity,” Journal of Clinical Investigation, vol. 92, no. 4, pp. 1623–1631, 1993.
[27]
E. A. Anderson, R. P. Hoffman, T. W. Balon, C. A. Sinkey, and A. L. Mark, “Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans,” Journal of Clinical Investigation, vol. 87, no. 6, pp. 2246–2252, 1991.
[28]
E. J. Henriksen, “Invited review: effects of acute exercise and exercise training on insulin resistance,” Journal of Applied Physiology, vol. 93, no. 2, pp. 788–796, 2002.
[29]
W. M. Kohrt, M. T. Malley, A. R. Coggan et al., “Effects of gender, age, and fitness level on response of VO2max to training in 60–71?yr olds,” Journal of Applied Physiology, vol. 71, no. 5, pp. 2004–2011, 1991.