全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

DFAL: Diode-Free Adiabatic Logic Circuits

DOI: 10.1155/2013/673601

Full-Text   Cite this paper   Add to My Lib

Abstract:

The manufacturing advances in semiconductor processing (continually reducing minimum feature size of transistors, increased complexity and ever increasing number of devices on a given IC) change the design challenges for circuit designers in CMOS technology. The important challenges are low power high speed computational devices. In this paper a novel low power adiabatic circuit topology is proposed. By removing the diode from the charging and discharging path, higher output amplitude is achieved and also the power dissipation of the diodes is eliminated. A mathematical expression has been developed to explain the energy dissipation in the proposed circuit. Performance of the proposed logic is analyzed and compared with CMOS and reported adiabatic logic styles. Also the layout of proposed inverter circuit has been drawn. Subsequently proposed topology-based various logic gates, combinational and sequential circuits and multiplier circuit are designed and simulated. The simulations were performed by VIRTUOSO SPECTRE simulator of Cadence in 0.18?μm UMC technology. In proposed inverter the energy efficiency has been improved to almost 60% up to 100?MHz in comparison to conventional CMOS circuits. The present research provides low power high speed results up to 100?MHz, and proposal has proven to be used in power aware high-performance VLSI circuitry. 1. Introduction During the past decade, use of adiabatic logic circuits with energy recovery scheme has received considerable attention in high performance low-power applications such as radio-frequency identification (RFID) tags, smart cards, and sensors because they outperforms in energy efficiency without sacrificing noise immunity and driving ability over their CMOS counterparts. The power consumption in conventional CMOS circuits is proportional to the load capacitance and square of the supply voltage [1, 2], thus researchers have been focused on scaling of the supply voltage and reducing the capacitance to reduce power consumption. For scaling the supply voltage the transistor threshold voltage ( ) must also be scaled down proportionally, however reducing the transistor threshold voltage results in proportional increase in subthreshold leakage current. Further the circuit capacitance can be minimized by reducing the sizes of devices but this affects the driving ability of the circuit [3]. Due to the above limitations, in recent years adiabatic systems have been used to reduce power consumption. Various adiabatic logic circuits have been proposed [3–21] working on the energy recovery [4] principle. The

References

[1]  D. A. Hodges, H. G. Jackson, and R. A. Saleh, Analysis and Design of Digital Integrated Circuits, McGraw-Hill, New York, NY, USA, 3rd edition, 2003.
[2]  N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, Addison-Wesley, Reading, Mass, USA, 3rd edition, 2004.
[3]  K. V. De and D. J. Meindl, “Opportunities for non-dissipative computation,” in Proceedings of the 9th Annual IEEE International ASIC Conference and Exhibit, pp. 297–300, Rochester, NY, USA, September 1996.
[4]  W. C. Athas, L. Svensson, J. G. Koller, N. Tzartzanis, and E. Y. C. Chou, “Low-power digital systems based on adiabatic-switching principles,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2, no. 4, pp. 398–407, 1994.
[5]  K. A. Valiev and V. I. Starosel'skii, “A model and properties of a thermodynamically reversible logic gate,” Mikroelektronika, vol. 29, no. 2, pp. 83–98, 2000.
[6]  Y. Moon and D. K. Jeong, “An efficient charge recovery logic circuit,” IEEE Journal of Solid-State Circuits, vol. 31, no. 4, pp. 514–522, 1996.
[7]  A. G. Dickinson and J. S. Denker, “Adiabatic dynamic logic,” IEEE Journal of Solid-State Circuits, vol. 30, no. 3, pp. 311–315, 1995.
[8]  D. Maksimovi? and V. Oklobd?ija, “Integrated power clock generators for low-energy logic,” in Proceedings of the 26th Annual IEEE Power Electronics Specialists Conference (PESC '95), vol. 1, pp. 61–67, Atlanta, Ga, USA, June 1995.
[9]  V. S. Sathe, J. Y. Chueh, and M. C. Papaefthymiou, “Energy-efficient GHz-class charge-recovery logic,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 38–47, 2007.
[10]  S. Wisetphanichkij and K. Dejhan, “The combinational and sequential adiabatic circuit design and its applications,” Circuits, Systems, and Signal Processing, vol. 28, no. 4, pp. 523–534, 2009.
[11]  M. E. Hwang, A. Raychowdhury, and K. Roy, “Energy-recovery techniques to reduce on-chip power density in molecular nanotechnologies,” IEEE Transactions on Circuits and Systems I, vol. 52, no. 8, pp. 1580–1589, 2005.
[12]  M. Khatir, A. Ejlali, and A. Moradi, “Improving the energy efficiency of reversible logic circuits by the combined use of adiabatic styles,” Integration, the VLSI Journal, vol. 44, no. 1, pp. 12–21, 2011.
[13]  N. S. S. Reddy, M. Satyam, and K. L. Kishore, “Cascadable adiabatic logic circuits for low-power applications,” IET Circuits, Devices and Systems, vol. 2, no. 6, pp. 518–526, 2008.
[14]  Yibin Ye and And Kaushik Roy, “QSERL: quasi-static energy recovery logic,” IEEE Journal of Solid-State Circuits, vol. 36, no. 2, pp. 239–248, 2001.
[15]  C. S. A. Gong, M. T. Shiue, C. T. Hong, and K. W. Yao, “Analysis and design of an efficient irreversible energy recovery logic in 0.18?μm CMOS,” IEEE Transactions on Circuits and Systems I, vol. 55, no. 9, pp. 2595–2607, 2008.
[16]  N. Anuar, Y. Takahashi, and T. Sekine, “Two phase clocked adiabatic static CMOS logic and its logic family,” Journal of Semiconductor Technology and Science, vol. 10, no. 1, pp. 1–10, 2010.
[17]  A. Blotti and R. Saletti, “Ultralow-power adiabatic circuit semi-custom design,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 11, pp. 1248–1253, 2004.
[18]  S. Wairya, R. K. Nagaria, and S. Tiwari, “Performance analysis of high speed hybrid CMOS full adder circuits for low voltage VLSI design,” VLSI Design, vol. 2012, Article ID 173079, 18 pages, 2012.
[19]  S. Kim, C. H. Ziesler, and M. C. Papaefthymiou, “A true single-phase 8-bit adiabatic multiplier,” in Proceedings of the 38th Design Automation Conference, pp. 758–763, June 2001.
[20]  N. Anuar, y. Takahashi, and T. Sekine, “LSI implementation of a low-power -bit array two-phase clocked adiabatic static CMOS logic multiplier,” Microelectronics Journal, vol. 43, no. 4, pp. 244–249, 2012.
[21]  S. Upadhyay, R. K. Nagaria, and R. A. Mishra, “Complementary energy path adiabatic logic based full adder circuit,” Journal of World Academy of Science, Engineering and Technology, no. 66, pp. 161–166, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133