Current difference buffered amplifier (CDBA) based universal inverse filter configuration is proposed. The topology can be used to synthesize inverse low-pass (ILP), inverse high-pass (IHP), inverse band-pass (IBP), inverse band-reject (IBR), and inverse all-pass filter functions with appropriate admittance choices. Workability of the proposed universal inverse filter configuration is demonstrated through PSPICE simulations for which CDBA is realized using current feedback operational amplifier (CFOA). The simulation results are found in close agreement with the theoretical results. 1. Introduction Inverse filters are commonly used in communication [1], speech processing, audio and acoustic systems [2, 3], and instrumentation [4] to reverse the distortion of the signal incurred due to signal processing and transmission. The transfer characteristics of the system that caused the distortion should be known a priori and the inverse filter to be used should have a reciprocal transfer characteristic so as to result in an undistorted desired signal. Literature review on inverse filter suggests that numerous well-established [5] methods for digital inverse filter design do exist but analog inverse filter design remained unexplored area as is evident from the limited availability of analog inverse filter circuits/design methods [6–14] until recently. However recent research trend suggests that the area is now gaining a renewed interest. A brief account of the complete literature on analog inverse filter is presented here. Reference [6] presents a general method for obtaining the inverse transfer function for linear dynamic systems and the inverse transfer characteristic for nonlinear resistive circuits using nullors. The realization procedures for the current-mode FTFN-based inverse filters from the voltage-mode op-amp-based RC filters are presented in [7, 8]. The procedure outlined in [7] is applicable to planar circuits only as it uses RC?:?CR dual transformation, whereas the method presented in [8] makes use of adjoint transformation and thus is applicable to nonplanar circuits [12]. Single FTFN based inverse filters proposed in [9–12] present inverse filters using current feedback operational amplifier (CFOA). All the circuits presented in [10, 11] provide single inverse filter function; however [12] presents a topology which can realize inverse low-pass (ILP), inverse high-pass (IHP), and inverse band-pass (IBP) filter functions by appropriate admittance choice. In [13, 14] inverse all-pass (IAP) filters have been implemented using current difference
References
[1]
J. K. Tugnait, “Identification and deconvolution of multichannel linear non-Gaussian processes using higher order statistics and inverse filter criteria,” IEEE Transactions on Signal Processing, vol. 45, no. 3, pp. 658–672, 1997.
[2]
A. Watanabe, “Formant estimation method using inverse-filter control,” IEEE Transactions on Speech and Audio Processing, vol. 9, no. 4, pp. 317–326, 2001.
[3]
O. Kirkeby and P. A. Nelson, “Digital filter design for inversion problems in sound reproduction,” Journal of the Audio Engineering Society, vol. 47, no. 7-8, pp. 583–595, 1999.
[4]
Z. Zhang, D. Wang, W. Wang, H. Du, and J. Zu, “A group of inverse filters based on stabilized solutions of fredholm integral equations of the first kind,” in Proceedings of the IEEE International Instrumentation and Measurement Technology Conference, pp. 668–671, May 2008.
[5]
G. John Proakis and G. Dimitris Manolakis, Digital Signal Processing, Prentice Hall, New York, NY, USA, 4th edition, 2007.
[6]
A. Leuciuc, “Using nullors for realisation of inverse transfer functions and characteristics,” Electronics Letters, vol. 33, no. 11, pp. 949–951, 1997.
[7]
B. Chipipop and W. Surakampontorn, “Realization of current-mode FTFN-based inverse filter,” Electronics Letters, vol. 35, no. 9, pp. 690–692, 1999.
[8]
H. Y. Wang and C. T. Lee, “Using nullors for realisation of current-mode FTFN-based inverse filters,” Electronics Letters, vol. 35, no. 22, pp. 1889–1890, 1999.
[9]
M. T. Abuelma'atti, “Identification of cascadable current-mode filters and inverse-filters using single FTFN,” Frequenz, vol. 54, no. 11-12, pp. 284–289, 2000.
[10]
S. S. Gupta, D. R. Bhaskar, R. Senani, and A. K. Singh, “Inverse active filters employing CFOAs,” Electrical Engineering, vol. 91, no. 1, pp. 23–26, 2009.
[11]
S. S. Gupta, D. R. Bhaskar, and R. Senani, “New analogue inverse filters realised with current feedback op-amps,” International Journal of Electronics, vol. 98, no. 8, pp. 1103–1113, 2011.
[12]
H.-Y. Wang, S.-H. Chang, T.-Y. Yang, and P.-Y. Tsai, “A novel multifunction CFOA-based inverse filter,” Circuits and Systems, vol. 2, pp. 14–17, 2011.
[13]
N. A. Shah, M. Quadri, and S. Z. Iqbal, “High output impedance current-mode allpass inverse filter using CDTA,” Indian Journal of Pure and Applied Physics, vol. 46, no. 12, pp. 893–896, 2008.
[14]
N. A. Shah and M. F. Rather, “Realization of voltage-mode CCII-based allpass filter and its inverse version,” Indian Journal of Pure and Applied Physics, vol. 44, no. 3, pp. 269–271, 2006.
[15]
C. Toumazu, F. J. Lidgey, and D. G. Haigh, Analogue IC Design: The Current Mode Approach, IEEE Circuits and Systems Series, Peringrinus, 1990.
[16]
C. Acar and S. Ozoguz, “A new versatile building block: current differencing buffered amplifier suitable for analog signal-processing filters,” Microelectronics Journal, vol. 30, no. 2, pp. 157–160, 1999.
[17]
S. ?zcan, A. Toker, C. Acar, H. Kuntman, and O. ?i?eko?lu, “Single resistance-controlled sinusoidal oscillators employing current differencing buffered amplifier,” Microelectronics Journal, vol. 31, no. 3, pp. 169–174, 2000.
[18]
AD844 Current Feedback Op-Amp Data Sheet, Analog Devices Inc., Norwood, NJ, USA, 1990.
[19]
C. Sánchez-López, F. V. Fernández, E. Tlelo-Cuautle, and S. X. D. Tan, “Pathological element-based active device models and their application to symbolic analysis,” IEEE Transactions on Circuits and Systems I, vol. 58, no. 6, pp. 1382–1395, 2011.
[20]
E. Tlelo-Cuautle, C. Sánchez-López, and D. Moro-Frías, “Symbolic analysis of (MO)(I)CCI(II)(III)-based analog circuits,” International Journal of Circuit Theory and Applications, vol. 38, no. 6, pp. 649–659, 2010.
[21]
R. Trejo-Guerra, E. Tlelo-Cuautle, C. Sánchez-López, J. M. Mu?oz-Pacheco, and C. Cruz-Hernández, “Realization of multiscroll chaotic attractors by using current-feedback operational amplifiers,” Revista Mexicana de Fisica, vol. 56, no. 4, pp. 268–274, 2010.