Review and Progress towards the Capacity Boost of Overhead and Underground Medium-Voltage and Low-Voltage Broadband over Power Lines Networks: Cooperative Communications through Two- and Three-Hop Repeater Systems
This paper reviews and analyzes the broadband capacity and the coexistence potential of overhead and underground medium-voltage/broadband over power lines (MV/BPL) and low-voltage/broadband over power lines (LV/BPL) topologies when one and two repeaters are additively deployed between their existing transmitting and receiving ends (overhead and underground MV/BPL and LV/BPL topologies with two- and three-hop repeater system, respectively). The contribution of this paper is four fold. First, the factors that influence the broadband capacity performance of overhead and underground MV/BPL and LV/BPL topologies with multihop repeater systems are identified, namely the number of repeaters, the distribution power grid type—either overhead or underground, either MV or LV, the initial distribution BPL topology, the multiconductor transmission line configuration, and coupling scheme applied. Second, the well-validated applicability of two-hop repeater systems is now extended in overhead and underground LV/BPL and MV/BPL networks. The significant mitigating role of two-hop repeater systems against capacity losses due to aggravated topologies or different coupling schemes is verified. Third, the deployment upgrade of two- to three-hop repeater systems in distribution BPL topologies is first examined in terms of broadband capacity performance. To study the occurred capacity improvement, suitable capacity contour plots are first proposed. Fourth, multi-hop repeater systems are identified as valuable technology solution so that the required intraoperability between overhead and underground MV/BPL and LV/BPL networks, which is a prerequisite condition before BPL systems symbiosis with other broadband technologies (interoperability), is promoted. 1. Introduction The limited investments made in the energy sector during the last decades, as well as the integration of new smart grid (SG) requirements such as the renewable and distributed energy source integration, microgrids, demand side management, and demand response programs trigger significant efforts towards modernization of power distribution grid—either overhead or underground, either medium voltage (MV) or lowc voltage (LV) power grids—[1, 2]. The deployment of broadband over power lines (BPL) networks across the entire distribution grid can help towards the development of an advanced IP-based power system equipped with a plethora of SG applications [3–5]. Exploiting the strong aspects of multihop and relay-based communications, which have been studied either in wireless [6–8] or in BPL environments [9–15], the
References
[1]
A. G. Lazaropoulos, “Review and progress towards the common broadband management of high-voltage transmission grids: model expansion and comparative modal analysis,” ISRN Electronics, vol. 2012, Article ID 935286, 18 pages, 2012.
[2]
G. T. Heydt, C. C. Liu, A. G. Phadke, and V. Vittal, “Solutions for the crisis in electric power supply,” IEEE Computer Applications in Power, vol. 14, no. 3, pp. 22–30, 2001.
[3]
A. G. Lazaropoulos, “Towards modal integration of overhead and underground low-voltage and medium-voltage power line communication channels in the smart grid landscape: model expansion, broadband signal transmission characteristics, and statistical performance metrics (Invited Paper),” ISRN Signal Processing, vol. 2012, Article ID 121628, 17 pages, 2012.
[4]
R. Schneiderman, “Smart grid represents a potentially huge market for the electronics industry,” IEEE Signal Processing Magazine, vol. 27, no. 5, pp. 8–15, 2010.
[5]
S. Galli, A. Scaglione, and Z. Wang, “For the grid and through the grid: the role of power line communications in the smart grid,” Proceedings of the IEEE, vol. 99, no. 6, pp. 998–1027, 2011.
[6]
M. O. Hasna and M. S. Alouini, “Outage probability of multihop transmission over Nakagami fading channels,” IEEE Communications Letters, vol. 7, no. 5, pp. 216–218, 2003.
[7]
J. Boyer, D. D. Falconer, and H. Yanikomeroglu, “Multihop diversity in wireless relaying channels,” IEEE Transactions on Communications, vol. 52, no. 10, pp. 1820–1830, 2004.
[8]
J. Wagner and A. Wittneben, “On capacity scaling of multi-antenna multi-hop networks: the significance of the relaying strategy in the ‘long network limit’,” IEEE Transactions on Information Theory, vol. 58, no. 4, pp. 2127–2143, 2012.
[9]
Y. H. Kim, S. Choi, S. C. Kim, and J. H. Lee, “Capacity of OFDM two-hop relaying systems for medium-voltage power-line access networks,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 886–894, 2012.
[10]
X. Cheng, R. Cao, and L. Yang, “On the system capacity of relay-aided Powerline Communications,” in Proceedings of the IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '11), pp. 170–175, Udine, Italy, April 2011.
[11]
L. Lampe, R. Schober, and S. Yiu, “Distributed space-time coding for multihop transmission in power line communication networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1389–1400, 2006.
[12]
V. B. Balakirsky and A. J. Han Vinck, “Potential performance of PLC systems composed of several communication links,” in Proceedings of the 9th International Symposium on Power Line Communications and Its Applications (ISPLC '05), pp. 12–16, Vancouver, BC, Canada, April 2005.
[13]
A. G. Lazaropoulos, “Deployment concepts for overhead high voltage broadband over power lines connections with two-hop repeater system: capacity countermeasures against aggravated topologies and high noise environments,” Progress in Electromagnetics Research B, vol. 44, pp. 283–307, 2012.
[14]
G. Bumiller, L. Lampe, and H. Hrasnica, “Power line communication networks for large-scale control and automation systems,” IEEE Communications Magazine, vol. 48, no. 4, pp. 106–113, 2010.
[15]
L. Lampe and A. J. Han Vinck, “Cooperative multihop power line communications,” in Proceedings of the 16th IEEE International Symposium on Power Line Communications and Its Applications (ISPLC '16), pp. 1–6, Beijing, China, March 2012.
[16]
A. G. Lazaropoulos, “Factors influencing broadband transmission characteristics of underground low-voltage distribution networks,” IET Communications, vol. 6, no. 17, pp. 2886–2893, 2012.
[17]
A. G. Lazaropoulos and P. G. Cottis, “Transmission characteristics of overhead medium-voltage power-line communication channels,” IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1164–1173, 2009.
[18]
A. G. Lazaropoulos and P. G. Cottis, “Capacity of overhead medium voltage power line communication channels,” IEEE Transactions on Power Delivery, vol. 25, no. 2, pp. 723–733, 2010.
[19]
A. G. Lazaropoulos and P. G. Cottis, “Broadband transmission via underground medium-voltage power lines—part I: transmission characteristics,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2414–2424, 2010.
[20]
A. G. Lazaropoulos and P. G. Cottis, “Broadband transmission via underground medium-voltage power lines—part II: capacity,” IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 2425–2434, 2010.
[21]
A. G. Lazaropoulos, “Towards broadband over power lines systems integration: transmission characteristics of underground low-voltage distribution power lines,” Progress in Electromagnetics Research B, vol. 39, pp. 89–114, 2012.
[22]
A. G. Lazaropoulos, “Broadband transmission characteristics of overhead high-voltage power line communication channels,” Progress in Electromagnetics Research B, vol. 36, pp. 373–398, 2012.
[23]
A. G. Lazaropoulos, “Broadband transmission and statistical performance properties of overhead high-voltage transmission networks,” Journal of Computer Networks and Communications, vol. 2012, Article ID 875632, 16 pages, 2012.
[24]
OPERA1, “D44: report presenting the architecture of plc system, the electricity network topologies, the operating modes and the equipment over which PLC access system will be installed,” IST Integrated Project 507667, 2005.
[25]
P. Amirshahi and M. Kavehrad, “High-frequency characteristics of overhead multiconductor power lines for broadband communications,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1292–1302, 2006.
[26]
P. Amirshahi, Broadband access and home networking through powerline networks [Ph.D. thesis], The Pennsylvania-State University, University Park, Pa, USA, 2006.
[27]
M. D'Amore and M. S. Sarto, “A new formulation of lossy ground return parameters for transient analysis of multiconductor dissipative lines,” IEEE Transactions on Power Delivery, vol. 12, no. 1, pp. 303–309, 1997.
[28]
OPERA1, “D5: pathloss as a function of frequency, distance and network topology for various LV and MV European powerline networks,” IST Integrated Project 507667, 2005.
[29]
T. Calliacoudas and F. Issa, “Multiconductor transmission lines and cables solver, an efficient simulation tool for PL channel networks development,” in Proceedings of the IEEE International Conference on Power Line Communications and Its Applications (ISPLC '02), Athens, Greece, March 2002.
[30]
F. Issa, D. Chaffanjon, E. P. de la Bathie, and A. Pacaud, “An efficient tool for modal analysis transmission lines for PLC networks development,” in Proceedings of the IEEE International Conferences on Power Line Communications and Its Applications, Athens, Greece, March 2002.
[31]
J. Anatory and N. Theethayi, “On the efficacy of using ground return in the broadband power-line communications—a transmission-line analysis,” IEEE Transactions on Power Delivery, vol. 23, no. 1, pp. 132–139, 2008.
[32]
P. C. J. M. van der Wielen, On-line detection and location of partial discharges in medium-voltage power cables [Ph.D. thesis], Eindhoven University of Technology, Eindhoven, The Netherlands, 2005.
[33]
P. C. J. M. van der Wielen, E. F. Steennis, and P. A. A. F. Wouters, “Fundamental aspects of excitation and propagation of on-line partial discharge signals in three-phase medium voltage cable systems,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 10, no. 4, pp. 678–688, 2003.
[34]
T. Sartenaer, Multiuser communications over frequency selective wired channels and applications to the powerline access network [Ph.D. thesis], Université Catholique de Louvain, Louvain-la-Neuve, Belgium, 2004.
[35]
T. Sartenaer and P. Delogne, “Powerline cables modelling for broadband communications,” in Proceedings of the IEEE International Conference on Power Line Communications and its Applications (ISPLC '01), pp. 331–337, Malm?, Sweden, April 2001.
[36]
M. Tang and M. Zhai, “Research of transmission parameters of four-conductor cables for power line communication,” in Proceedings of the International Conference on Computer Science and Software Engineering, vol. 5, pp. 1306–1309, Wuhan, China, December 2008.
[37]
N. Theethayi, Electromagnetic interference in distributed outdoor electrical systems, with an emphasis on lightning interaction with electrified railway network [Ph.D. thesis], Uppsala University, Uppsala, Sweden, 2005.
[38]
S. Galli, A. Scaglione, and K. Dostert, “Broadband is power: internet access through the power line network,” IEEE Communications Magazine, vol. 41, no. 5, pp. 82–83, 2003.
[39]
T. Banwell and S. Galli, “A novel approach to the modeling of the indoor power line channel part I: circuit analysis and companion model,” IEEE Transactions on Power Delivery, vol. 20, no. 2 I, pp. 655–663, 2005.
[40]
T. Sartenaer and P. Delogne, “Deterministic modeling of the (shielded) outdoor power line channel based on the Multiconductor Transmission Line equations,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1277–1290, 2006.
[41]
J. Anatory, N. Theethayi, R. Thottappillil, M. M. Kissaka, and N. H. Mvungi, “The influence of load impedance, line length, and branches on underground cable power-line communications (PLC) systems,” IEEE Transactions on Power Delivery, vol. 23, no. 1, pp. 180–187, 2008.
[42]
J. Anatory, N. Theethayi, and R. Thottappillil, “Power-line communication channel model for interconnected networks—part II: multiconductor system,” IEEE Transactions on Power Delivery, vol. 24, no. 1, pp. 124–128, 2009.
[43]
J. Anatory, N. Theethayi, R. Thottappillil, M. Kissaka, and N. Mvungi, “The effects of load impedance, line length, and branches in typical low-voltage channels of the BPLC systems of developing countries: transmission-line analyses,” IEEE Transactions on Power Delivery, vol. 24, no. 2, pp. 621–629, 2009.
[44]
S. Galli and T. Banwell, “A novel approach to the modeling of the indoor power line channel—part II: transfer function and its properties,” IEEE Transactions on Power Delivery, vol. 20, no. 3, pp. 1869–1878, 2005.
[45]
H. Meng, S. Chen, Y. L. Guan et al., “Modeling of transfer characteristics for the broadband power line communication channel,” IEEE Transactions on Power Delivery, vol. 19, no. 3, pp. 1057–1064, 2004.
[46]
S. Galli and T. C. Banwell, “A deterministic frequency-domain model for the indoor power line transfer function,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1304–1315, 2006.
[47]
A. Cataliotti, A. Daidone, and G. Tinè, “Power line communication in medium voltage systems: characterization of MV cables,” IEEE Transactions on Power Delivery, vol. 23, no. 4, pp. 1896–1902, 2008.
[48]
A. M. Tonello, F. Versolatto, B. Béjar, and S. Zazo, “A fitting algorithm for random modeling the PLC channel,” IEEE Transactions on Power Delivery, vol. 27, no. 3, pp. 1477–1484, 2012.
[49]
J. Anatory, N. Theethayi, R. Thottappillil, M. M. Kissaka, and N. H. Mvungi, “The effects of load impedance, line length, and branches in the BPLC-transmission-line analysis for indoor voltage channel,” IEEE Transactions on Power Delivery, vol. 22, no. 4, pp. 2150–2155, 2007.
[50]
M. Kuhn, S. Berger, I. Hammerstr?m, and A. Wittneben, “Power line enhanced cooperative wireless communications,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1401–1410, 2006.
[51]
S. Liu and L. J. Greenstein, “Emission characteristics and interference constraint of overhead medium-voltage Broadband Power Line (BPL) systems,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '08), pp. 2921–2925, New Orleans, La, USA, December 2008.
[52]
R. Aquilué, Power line communications for the electrical utility: physical layer design and channel modeling [Ph.D. thesis], Universitat Ramon Llull, Enginyeria I Arquitectura La Salle, Barcelona, Spain, 2008.
[53]
J. Song, C. Pan, Q. Wu et al., “Field trial of digital video transmission over medium-voltage powerline with time-domain synchronous orthogonal frequency division multiplexing technology,” in Proceedings of the International Symposium on Power Line Communications and Its Applications (ISPLC '07), pp. 559–564, Pisa, Italy, March 2007.
[54]
M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive noise in broad-band powerline communications,” IEEE Transactions on Electromagnetic Compatibility, vol. 44, no. 1, pp. 249–258, 2002.
[55]
M. Katayama, T. Yamazato, and H. Okada, “A mathematical model of noise in narrowband power line communication systems,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 7, pp. 1267–1276, 2006.
[56]
Ofcom, “DS2 PLT Measurements in Crieff Ofcom Technical Report 793, Part 2, May 2005,”.
[57]
M. Gebhardt, F. Weinmann, and K. Dostert, “Physical and regulatory constraints for communication over the power supply grid,” IEEE Communications Magazine, vol. 41, no. 5, pp. 84–90, 2003.
[58]
Ofcom, “Amperion PLT Measurements in Crieff,” Ofcom Technical Report, September 2005, http://www.ofcom.org.uk/research/technology/research/archive/cet/powerline/.
[59]
NATO, “HF Interference, Procedures and Tools (Interférences HF, procédures et outils) Final Report of NATO RTO Information Systems Technology,” RTO Technical Report TR-IST-050, North Atlantic Treaty Organisation, 2007.