Durability of single-walled (SWCNT) and multiwalled carbon nanotubes (MWCNT) as Pt supports was studied using two accelerated durability tests (ADTs), potential cycling and potentiostatic treatment. ADT of gas diffusion electrodes (GDEs) was once studied during the potential cycling. Pt surface area loss with increasing the potential cycling numbers for GDE using SWCNT was shown to be higher than that for GDE using MWCNT. In addition, equilibrium concentrations of dissolved Pt species from GDEs in 1.0?M H2SO4 were found to be increased with increasing the potential cycling numbers. Both findings suggest that Pt detachment from support surface plays an important role in Pt surface loss in proton exchange membrane fuel cell electrodes. ADT of GDEs was also studied following the potentiostatic treatments up to 24?h under the following conditions: argon purged, 1.0?M H2SO4, 60°C, and a constant potential of 0.9?V. The subsequent electrochemical characterization suggests that GDE that uses MWCNT/Pt is electrochemically more stable than other GDE using SWCNT/Pt. As a result of high corrosion resistance, GDE that uses MWCNT/Pt shows lower loss of Pt surface area and oxygen reduction reaction activity when used as fuel cell catalyst. The results also showed that potential cycling accelerates the rate of surface area loss. 1. Introduction The durability of proton exchange membrane fuel cell (PEMFC) is a major barrier to the commercialization of these systems for stationary and transportation power applications. Gas diffusion electrodes (GDEs) of PEMFCs use electrocatalysts for the oxidation of hydrogen at the anode and reduction of oxygen in air at the cathode. Currently, Pt supported on high surface area carbons is the best feasible electrocatalyst for PEMFC systems [1]. Limiting the commercialization of PEMFCs, electrocatalyst durability is a factor for consideration [2–4]. The degradation mechanisms proposed include catalyst dissolution [5, 6] and carbon support corrosion [7]. Carbon supports corrosion in acidic electrolytes involves the general steps of oxidation of carbon in the lattice structure (Reaction (1)) followed by hydrolysis (Reaction (2)) and finally gasification of the oxidized carbon to (Reaction (3)), wherein the subscript ‘‘ ’’ denotes surface species [8, 9]: One strategy to decrease carbon support corrosion is to use carbon with high extent of graphitization, which is due to decreased defect sites on the carbon structure, where carbon oxidation starts [10, 11]. With the development of novel carbon nanostructure materials [12], for example,
References
[1]
D. Thompsett, W. Vielstich, A. Lamm, and H. A. Gasteiger, Handbook of Fuel Cells, Fundamentals Technology and Applications, John Wiley & Sons, New York, NY, USA, 2003.
[2]
E. Antolini, “Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells,” Journal of Materials Science, vol. 38, no. 14, pp. 2995–3005, 2003.
[3]
J. Xie, D. L. Wood, K. L. More, P. Atanassov, and R. L. Borup, “Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions,” Journal of the Electrochemical Society, vol. 152, no. 5, pp. A1011–A1020, 2005.
[4]
X. Cheng, L. Chen, C. Peng, Z. Chen, Y. Zhang, and Q. Fan, “Catalyst microstructure examination of PEMFC membrane electrode assemblies versus time,” Journal of the Electrochemical Society, vol. 151, no. 1, pp. A48–A52, 2004.
[5]
Z. Siroma, K. Ishii, K. Yasuda, Y. Miyazaki, M. Inaba, and A. Tasaka, “Imaging of highly oriented pyrolytic graphite corrosion accelerated by Pt particles,” Electrochemistry Communications, vol. 7, no. 11, pp. 1153–1156, 2005.
[6]
L. Li and Y. Xing, “Electrochemical durability of carbon nanotubes in noncatalyzed and catalyzed oxidations,” Journal of the Electrochemical Society, vol. 153, no. 10, pp. A1823–A1828, 2006.
[7]
Y. Y. Shao, G. P. Yin, Y. Z. Gao, and P. F. Shi, “Durability study of PtC and PtCNTs catalysts under simulated PEM fuel cell conditions,” Journal of the Electrochemical Society, vol. 153, no. 6, pp. A1093–A1097, 2006.
[8]
H. Binder, A. K?hling, K. Richter, and G. Sandstede, “über die anodische oxydation von aktivkohlen in w?ssrigen elektrolyten,” Electrochimica Acta, vol. 9, no. 3, pp. 255–274, 1964.
[9]
K. Kinoshita, Carbon Electrochemical and Physicochemical Properties, John Wiley & Sons, New York, NY, USA, 1988.
[10]
Y. Y. Shao, G. P. Yin, J. Zhang, and Y. Z. Gao, “Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution,” Electrochimica Acta, vol. 51, no. 26, pp. 5853–5857, 2006.
[11]
R. Kou, Y. Shao, D. Wang et al., “Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction,” Electrochemistry Communications, vol. 11, no. 5, pp. 954–957, 2009.
[12]
J. Lee, J. Kim, and T. Hyeon, “Recent progress in the synthesis of porous carbon materials,” Advanced Materials, vol. 18, no. 16, pp. 2073–2094, 2006.
[13]
R. Andrews, D. Jacques, D. Qian, and T. Rantell, “Multiwall carbon nanotubes: synthesis and application,” Accounts of Chemical Research, vol. 35, no. 12, pp. 1008–1017, 2002.
[14]
H. J. Dai, “Carbon nanotubes: synthesis, integration, and properties,” Accounts of Chemical Research, vol. 35, no. 12, pp. 1035–1044, 2002.
[15]
A. M. Kannan and L. Munukutla, “Carbon nano-chain and carbon nano-fibers based gas diffusion layers for proton exchange membrane fuel cells,” Journal of Power Sources, vol. 167, no. 2, pp. 330–335, 2007.
[16]
A. L. Dicks, “The role of carbon in fuel cells,” Journal of Power Sources, vol. 156, no. 2, pp. 128–141, 2006.
[17]
P. Serp, M. Corrias, and P. Kalck, “Carbon nanotubes and nanofibers in catalysis,” Applied Catalysis A, vol. 235, no. 2, pp. 337–358, 2003.
[18]
K. Lee, J. J. Zhang, H. J. Wang, and D. P. Wilkinson, “Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis,” Journal of Applied Electrochemistry, vol. 36, no. 5, pp. 507–522, 2006.
[19]
C. A. Bessel, K. Laubernds, N. M. Rodriguez, and R. T. K. Baker, “Graphite nanofibers as an electrode for fuel cell applications,” Journal of Physical Chemistry B, vol. 105, no. 6, pp. 1115–1118, 2001.
[20]
X. Wang, W. Li, Z. Chen, M. Waje, and Y. S. Yan, “Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell,” Journal of Power Sources, vol. 158, no. 1, pp. 154–159, 2006.
[21]
J. Wang, G. Yin, Y. Shao, S. Zhang, Z. Wang, and Y. Gao, “Effect of carbon black support corrosion on the durability of Pt/C catalyst,” Journal of Power Sources, vol. 171, no. 2, pp. 331–339, 2007.
[22]
J. Wang, G. Yin, Y. Shao, Z. Wang, and Y. Gao, “Investigation of further improvement of platinum catalyst durability with highly graphitized carbon nanotubes support,” Journal of Physical Chemistry C, vol. 112, no. 15, pp. 5784–5789, 2008.
[23]
A. Kongkanand, S. Kuwabata, G. Girishkumar, and P. Kamat, “Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction,” Langmuir, vol. 22, no. 5, pp. 2392–2396, 2006.
[24]
H. R. Colón-Mercado and B. N. Popov, “Stability of platinum based alloy cathode catalysts in PEM fuel cells,” Journal of Power Sources, vol. 155, no. 2, pp. 253–263, 2006.
[25]
P. Yu, M. Pemberton, and P. Plasse, “PtCo/C cathode catalyst for improved durability in PEMFCs,” Journal of Power Sources, vol. 144, no. 1, pp. 11–20, 2005.
[26]
J. Perez, E. R. Gonzalez, and E. A. Ticianelli, “Oxygen electrocatalysis on thin porous coating rotating platinum electrodes,” Electrochimica Acta, vol. 44, no. 8-9, pp. 1329–1339, 1998.
[27]
Y. Xing, L. Li, C. C. Chusuei, and R. V. Hull, “Sonochemical oxidation of multiwalled carbon nanotubes,” Langmuir, vol. 21, no. 9, pp. 4185–4190, 2005.
[28]
A. N. Golikand, E. Lohrasbi, M. G. Maragheh, and M. Asgari, “Effect of carbon surface oxidation on platinum supported carbon particles on the performance of gas diffusion electrodes for the oxygen reduction reaction,” Journal of Applied Electrochemistry, vol. 38, no. 6, pp. 869–874, 2008.
[29]
M. Ciureanu and H. Wang, “Electrochemical impedance study of electrode-membrane assemblies in PEM fuel cells. I. Electro-oxidation of H2 and H2/CO mixtures on Pt-based gas-diffusion electrodes,” Journal of the Electrochemical Society, vol. 146, no. 11, pp. 4031–4040, 1999.
[30]
P. J. Ferreira, G. J. La O', Y. Shao-Horn et al., “Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells: a mechanistic investigation,” Journal of the Electrochemical Society, vol. 152, no. 11, pp. A2256–A2271, 2005.
[31]
R. M. Darling and J. P. Meyers, “Kinetic model of platinum dissolution in PEMFCs,” Journal of the Electrochemical Society, vol. 150, no. 11, pp. A1523–A1527, 2003.
[32]
H. I. Elim, W. Jia, G. H. Ma, C. H. Sow, and C. H. A. Huan, “Ultrafast absorptive and refractive nonlinearities in multiwalled carbon nanotube films,” Applied Physics Letters, vol. 85, no. 10, article 1799, 3 pages, 2004.
[33]
J. S. Lauret, C. Voisin, G. Cassabois et al., “Ultrafast carrier dynamics in single-wall carbon nanotubes,” Physical Review Letters, vol. 90, no. 5, Article ID 057404, 4 pages, 2003.
[34]
K. H. Kangasniemi, D. A. Condit, and T. D. Jarvi, “Characterization of vulcan electrochemically oxidized under simulated PEM fuel cell conditions,” Journal of the Electrochemical Society, vol. 151, no. 4, pp. E125–E132, 2004.
[35]
J. S. Ye, X. Liu, H. F. Cui, W. D. Zhang, F. S. Sheu, and T. M. Lim, “Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors,” Electrochemistry Communications, vol. 7, no. 3, pp. 249–255, 2005.
[36]
R. Makharia, S. Kocha, P. Yu, M. Sweikart, W. Gu, and F. Wagner, “Durable PEM fuel cell electrode materials: requirements and benchmarking methodologies,” ECS Transactions, vol. 1, no. 8, pp. 3–18, 2006.
[37]
R. Borup, J. Davey, D. Wood, F. Garzon, and M. Inbody, doehydrogen program fy, Progress report VII.I. 3, p.1039, 2005.
[38]
R. L. Borup, J. R. Davey, F. H. Garzon, D. L. Wood, and M. A. Inbody, “PEM fuel cell electrocatalyst durability measurements,” Journal of Power Sources, vol. 163, no. 1, pp. 76–81, 2006.