The early stages of Co deposition on a silver electrode in ammonia medium were studied using cyclic voltammetry and chronoamperometry coupled with quartz crystal microbalance (EQCM) in ammonia solution. The results obtained by means of EQCM showed that during the initial stages of cobalt deposition a monolayer is formed on the substrate both in the underpotential and overpotential region, and this monolayer is formed at ?600 mV and ?980 mV. Once the cobalt deposition process starts, the growth is very fast making the investigation of the initial stages rather difficult. During this process, cobalt atoms transfer their two electrons through free species and not through cobalt hydroxide species adsorbed on the electrode as CoOH+ or Co(OH)2. In addition, it has been found that at potentials more positive than ?600 mV, ammonia adsorption takes place on the substrate surface, and theses species are replaced when the cobalt atoms arrive at potentials more negative than ?600 mV. 1. Introduction Cobalt is an element that involves a great interest due to its physical and chemical properties and technological applications. Some of its uses are as a catalyst in different reactions of technological interest or as a pigment for strong dark blue color. Also, this element is used in permanent magnet production as well as for preparation of super alloys of great hardness and resistant to high temperatures [1]. One of the properties of this element, when combined with another metal, is the giant magnetoresistance (GMR) whose study has drawn the attention of diverse research teams [2–12]. The importance of this effect lies in that applications of these systems include domains such as informatics, for preparation of reading devices, or technology, for magnetic sensor production. On the basis of these studies it has been possible to show [3] that GMR occurs in materials formed by one magnetic element (Ni, Fe, or Co) and another nonmagnetic material (Au, Ag, Pd, Cu, etc.). Until now, the commercial preparation of these materials has been preferably performed by metal evaporation techniques [4–6], in which to avoid undesirable contaminations the whole system must be subject to high-vacuum conditions that generate high production costs. Because of this, electrodeposition of these materials using a mixed bath is explored with the aim of making their elaboration cheaper. Unlike the techniques of metallic evaporation, electrochemical methods allow us to work in conditions that are similar to those of the environment as well as to reduce the risks of contamination under inert and
References
[1]
M. N. Baibich, J. M. Broto, A. Fert et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Physical Review Letters, vol. 61, no. 21, pp. 2472–2475, 1988.
[2]
A. E. Berkowitz, J. R. Mitchell, M. J. Carey et al., “Giant magnetoresistance in heterogeneous Cu-Co alloys,” Physical Review Letters, vol. 68, no. 25, pp. 3745–3748, 1992.
[3]
A. Gerber, A. Milner, I. Y. Korenblit, M. Karpovsky, A. Gladkikh, and A. Sulpice, “Temperature dependence of resistance and magnetoresistance of nanogranular Co-Ag films,” Physical Review B, vol. 57, no. 21, pp. 13667–13673, 1998.
[4]
J. Q. Xiao, J. S. Jiang, and C. L. Chien, “Giant magnetoresistance in nonmultilayer magnetic systems,” Physical Review Letters, vol. 68, pp. 3749–3752, 1992.
[5]
C. L. Chien, J. Q. Xiao, and J. S. Jiang, “Giant negative magnetoresistance in granular ferromagnetic systems (invited),” Journal of Applied Physics, vol. 73, pp. 5309–5314, 1993.
[6]
L. Piraux, J. M. George, J. F. Despres et al., “Giant magnetoresistance in magnetic multilayered nanowires,” Applied Physics Letters, vol. 65, no. 19, pp. 2484–2486, 1994.
[7]
S. Kenane, E. Chainet, B. Nguyen, A. Kadri, N. Benbrahim, and J. Voiron, “Giant magnetoresistance in Co-Ag granular films prepared by electrodeposition,” Electrochemistry Communications, vol. 4, no. 2, pp. 167–170, 2002.
[8]
A. Canzian, G. Bozzolo, and H. O. Mosca, “Modeling of stable and metastable structures of Co, Cr, or Fe deposited on Ag(100) substrates,” Thin Solid Films, vol. 519, no. 7, pp. 2201–2206, 2011.
[9]
Y. J. Chen, W. Y. Cheung, I. H. Wilson et al., “Magnetic domain structures of Co22Ag78 granular films observed by magnetic force microscopy,” Applied Physics Letters, vol. 72, no. 19, article 2472, 3 pages, 1998.
[10]
Y. D. Zhang, J. I. Budnick, W. A. Hines, C. L. Chien, and J. Q. Xiao, “Effect of magnetic field on the superparamagnetic relaxation in granular Co-Ag samples,” Applied Physics Letters, vol. 72, no. 16, pp. 2053–2055, 1998.
[11]
J. A. De Toro, J. P. Andrés, J. A. González, J. P. Goff, A. J. Barbero, and J. M. Riveiro, “Improved giant magnetoresistance in nanogranular Co/Ag: the role of interparticle RKKY interactions,” Physical Review B, vol. 70, no. 22, Article ID 224412, 6 pages, 2004.
[12]
F. M. De Horne, L. Piraux, and S. Micote, “Fabrication and physical properties of Pb/Cu multilayered superconducting nanowires,” Applied Physics Letters, vol. 86, no. 15, Article ID 152510, 3 pages, 2005.
[13]
D. M. Kolb, “Physical and electrochemical properties of metal monolayer on metallic substrates,” in Advances in Electrochemistry and Electrochemical Engineering, H. Gerischer and C. W. Tobias, Eds., vol. 11, pp. 125–271, Wiley-Interscience Publication, New York, NY, USA, 1978.
[14]
A. Aramata, “Underpotential deposition on single-crystal metals,” in Modern Aspects of Electrochemistry, J. O. BocKris, R. E. White, and B. E. Conway, Eds., vol. 31, pp. 181–249, Plenum Press, New York, NY, USA, 1997.
[15]
S. Trasatti, “Work function, electronegativity and electrochemical behaviour of metals. I. Selection of experimental values of work function,” Chimica e Industria, vol. 53, pp. 559–564, 1971.
[16]
R. Parsons, in Handbook of Electrochemical Constans, Butterworths, London, UK, 1959.
[17]
H. B. Michaelson, “Work functions of the elements,” Journal of Applied Physics, vol. 21, article 536, 5 pages, 1950.
[18]
S. D. Ardage and E. Gileadi, in Electrosorption, Plenum Press, New York, NY, USA, 1967.
[19]
J. W. Schultze and F. D. Koppitz, “Bond formation in electrosorbates-I correlation between the electrosorption valency and pauling's electronegativity for aqueous solutions,” Electrochimica Acta, vol. 21, no. 5, pp. 327–336, 1976.
[20]
L. H. Mendoza-Huizar, M. Palomar-Pardavé, and J. Robles, “Nucleation and growth of cobalt onto different substrates: part I. Underpotential deposition onto a gold electrode,” Journal of Electroanalytical Chemistry, vol. 521, no. 1-2, pp. 95–106, 2002.
[21]
I. Flis-Kabulska, “Electrodeposition of cobalt on gold during voltammetric cycling,” Journal of Applied Electrochemistry, vol. 36, no. 2, pp. 131–137, 2006.
[22]
A. Montes-Rojas, L. M. Torres-Rodríguez, and C. Nieto-Delgado, “Electromicrogravimetric study of underpotential deposition of Co on textured gold electrode in ammonia medium,” New Journal of Chemistry, vol. 31, no. 10, pp. 1769–1776, 2007.
[23]
S. P. Jiang and A. C. C. Tseung, “Reactive deposition of cobalt electrodes. III. Role of anions,” Journal of the Electrochemical Society, vol. 137, no. 11, pp. 3387–3393, 1990.
[24]
N. Pradhan, T. Subbaiah, S. C. Das, and U. N. Dash, “Effect of zinc on the electrocrystallization of cobalt,” Journal of Applied Electrochemistry, vol. 27, no. 6, pp. 713–719, 1997.
[25]
J. T. Matsushima, F. Trivinho-Strixino, and E. C. Pereira, “Investigation of cobalt deposition using the electrochemical quartz crystal microbalance,” Electrochimica Acta, vol. 51, no. 10, pp. 1960–1966, 2006.
[26]
O. Melroy, K. Kanazawa, J. G. Gordon, and D. Buttry, “Direct determination of the mass of an underpotentially deposited monolayer of lead on gold,” Langmuir, vol. 2, no. 6, pp. 697–700, 1986.
[27]
M. Hepel, S. Bruckenstein, and K. Kanige, “Expulsion of borate ions from the silver/solution interfacial region during underpotential deposition discharge of BiIII in borate buffer,” Journal of the Chemical Society, Faraday Transactions, vol. 89, no. 2, pp. 251–254, 1993.
[28]
B. K. Niece and A. A. Gewirth, “Potential-step chronocoulometric and quartz crystal microbalance investigation of underpotentially deposited Tl on Au(111) electrodes,” The Journal of Physical Chemistry B, vol. 102, pp. 818–823, 1998.
[29]
A. L. Donjuan-Medrano and A. Montes-Rojas, “Effect of the thickness of thallium deposits on the values of EQCM sensitivity constant,” New Journal of Chemistry, vol. 32, no. 11, pp. 1935–1944, 2008.
[30]
W. Blum and G. B. Hogaboom, in Galvanotecnia y Galvanoplastia: Dorado-Plateado-Niquelado-Cromado, CECSA, México, 1964.
[31]
B. Soto, E. M. Arce, M. Palomar-Pardave, and I. Gonzalez, “Electrochemical nucleation of cobalt onto glassy carbon electrode from ammonium chloride solutions,” Electrochimica Acta, vol. 41, pp. 2647–2655, 1996.
[32]
S. Fletcher, C. S. Halliday, D. Gates, M. Westcott, T. Lwin, and G. Nelson, “The response of some nucleation/growth processes to triangular scans of potential,” Journal of Electroanalytical Chemistry, vol. 159, no. 2, pp. 267–285, 1983.
[33]
S. Srinivasan and E. Gileadi, “The potential-sweep method: a theoretical analysis,” Electrochimica Acta, vol. 11, no. 3, pp. 321–335, 1966.
[34]
A. Hamelin, “Lead adsorption on gold single crystal stepped surfaces,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 101, pp. 285–290, 1979.
[35]
M. Kleinert, H. F. Waibel, G. E. Engelmann, H. Martin, and D. M. Kolb, “Dynamic EXAFS study of discharging nickel hydroxide electrode with non-integer Ni valency,” Electrochimica Acta, vol. 46, no. 20-21, pp. 3119–3127, 2001.
[36]
Z. Shi, S. Wu, and J. Lipkowski, “Coadsorption of metal atoms and anions: Cu upd in the presence of , Cl- and Br-,” Electrochimica Acta, vol. 40, pp. 9–15, 1995.
[37]
O. R. Melroy, M. G. Samant, G. L. Borges et al., “In-plane structure of underpotentially deposited copper on gold(111) determined by surface EXAFS,” Langmuir, vol. 4, no. 3, pp. 728–732, 1988.
[38]
G. Valette, “Double layer on silver single-crystal electrodes in contact with electrolytes having anions which present a slight specific adsorption: part I. The (110) face,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 122, pp. 285–297, 1981.