Nickel-based nanocomposite coatings were prepared from a Watts-type electrolyte containing reinforcement’s particles (silicon carbide and graphite) to deposit onto the steel St-37 substrate. The electrochemical plating of the coatings in absence and presence of surfactants and reinforcements particles was carried out to optimize high quality coatings with appropriate mechanical and morphological features. The surfactants such as cetyltrimethylammonium bromide (CTAB), sodyumdodecyl sulfate (SDS), and saccharine affected electrodeposition plating and subsequently changed mechanical characteristics. Based on XRD results, the dominant phases in the absence of surfactants were nickel oxide (NiO), nickel, and silicon carbide (SiC), while the main phases in presence of surfactants were nickel (Ni) and SiC. The hardness of the resultant coatings was found to be from 332 to 593 (Hv) depending on the bath parameter and the reinforcements weight percentage (wt%) in the Ni matrix. Microscopic observations illustrated a cluster-like structure which consisted of some fine sphere particulates with average particle size of 65–150?nm. According to elemental mapping spectra, a homogenous distribution of nickel, silicon, and carbon particles appeared into the nickel matrix coating. Finally, the experimental outcomes demonstrated that the surfactants have significant influence on the composition of coatings, surface morphology, and mechanical properties. 1. Introduction The recent researches in surface engineering were significantly focused on the development of low carbon steels (St-37) surfaces which can meet the industrial request [1–4]. The mechanical properties of many parts of surfaces were promoted by coating of numerous pure metals, ceramics, and alloys which can be deposited with fine grain sizes, for example, Ni, Pd, Cu, Ni–P, Ni–W, and Ni–Fe–Cr [5, 6]. Furthermore, various methods such as electrodeposition, ion implantation, chemical vapor deposition (CVD), laser beam deposition, physical vapor deposition (PVD), plasma, and high-velocity oxygen fuel (HVOF) spraying have been developed [7, 8]. Among these procedures, electrochemical plating is a proper method with remarkable features such as easy maintainability, easy low working temperatures, low cost, and high production rate [9]. In chemical techniques, surfactants have been used to absorb much more fine particles into the matrix, so that the repulsion force between particles with the same charges can be increased. This, in turn, reduces the agglomeration and provides a solution with more stable particles. It
References
[1]
D. Chaliampalias, G. Vourlias, E. Pavlidou, S. Skolianos, K. Chrissafis, and G. Stergioudis, “Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings,” Applied Surface Science, vol. 255, no. 6, pp. 3605–3612, 2009.
[2]
V. Vitry, A.-F. Kanta, and F. Delaunois, “Application of nitriding to electroless nickel-boron coatings: chemical and structural effects; mechanical characterization; corrosion resistance,” Materials & Design, vol. 39, pp. 269–278, 2012.
[3]
V. Vitry, A. F. Kanta, and F. Delaunois, “Initiation and formation of electroless nickel-boron coatings on mild steel: effect of substrate roughness,” Materials Science and Engineering B, vol. 175, no. 3, pp. 266–273, 2010.
[4]
B. Ramezanzadeh and M. M. Attar, “Studying the corrosion resistance and hydrolytic degradation of an epoxy coating containing ZnO nanoparticles,” Materials Chemistry and Physics, vol. 130, no. 3, pp. 1208–1219, 2011.
[5]
J. X. Kang, W. Z. Zhao, and G. F. Zhang, “Influence of electrodeposition parameters on the deposition rate and microhardness of nanocrystalline Ni coatings,” Surface and Coatings Technology, vol. 203, no. 13, pp. 1815–1818, 2009.
[6]
P. Sahoo and S. K. Das, “Tribology of electroless nickel coatings—a review,” Materials and Design, vol. 32, no. 4, pp. 1760–1775, 2011.
[7]
S. C. Tjong and H. Chen, “Nanocrystalline materials and coatings,” Materials Science & Engineering R-Reports, vol. 45, no. 1, pp. 1–88, 2004.
[8]
C. Suryanarayana and C. C. Koch, “Nanocrystalline materials—current research and future directions,” Hyperfine Interactions, vol. 130, no. 1-4, pp. 5–44, 2000.
[9]
P. Gyftou, M. Stroumbouli, E. A. Pavlatou, P. Asimidis, and N. Spyrellis, “Tribological study of Ni matrix composite coatings containing nano and micro SiC particles,” Electrochimica Acta, vol. 50, no. 23, pp. 4544–4550, 2005.
[10]
C. Zanella, M. Lekka, and P. L. Bonora, “Influence of the particle size on the mechanical and electrochemical behaviour of micro- and nano-nickel matrix composite coatings,” Journal of Applied Electrochemistry, vol. 39, no. 1, pp. 31–38, 2009.
[11]
M. R. Vaezi, S. K. Sadrnezhaad, and L. Nikzad, “Electrodeposition of Ni-SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics,” Colloids and Surfaces A, vol. 315, no. 1–3, pp. 176–182, 2008.
[12]
E. Broszeit, “Mechanical, thermal and tribological properties of electro- and chemodeposited composite coatings,” Thin Solid Films, vol. 95, no. 2, pp. 133–142, 1982.
[13]
I. Garcia, J. Fransaer, and J. P. Celis, “Electrodeposition and sliding wear resistance of nickel composite coatings containing micron and submicron SiC particles,” Surface and Coatings Technology, vol. 148, no. 2-3, pp. 171–178, 2001.
[14]
M. Surender, B. Basu, and R. Balasubramaniam, “Wear characterization of electrodeposited Ni-WC composite coatings,” Tribology International, vol. 37, no. 9, pp. 743–749, 2004.
[15]
V. V. N. Reddy, B. Ramamoorthy, and P. K. Nair, “A study on the wear resistance of electroless Ni-P/diamond composite coatings,” Wear, vol. 239, no. 1, pp. 111–116, 2000.
[16]
F. B. Bahaaideen, Z. M. Ripin, and Z. A. Ahmad, “Electroless (graphite)-SiC composite coating and its application onto piston rings of a small two stroke utility engine,” Journal of Scientific and Industrial Research, vol. 69, no. 11, pp. 830–834, 2010.
[17]
Y. Wu, B. Shen, L. Liu, and W. Hu, “The tribological behaviour of electroless Ni-P-Gr-SiC composite,” Wear, vol. 261, no. 2, pp. 201–207, 2006.
[18]
S. K. Kim and H. J. Yoo, “Formation of bilayer Ni-SiC composite coatings by electrodeposition,” Surface and Coatings Technology, vol. 108-109, pp. 564–569, 1998.
[19]
Z. X. Niu, F. H. Cao, W. Wang, Z. Zhang, J. Q. Zhang, and C. N. Cao, “Electrodeposition of Ni-SiC nanocomposite film,” Transactions of Nonferrous Metals Society of China, vol. 17, no. 1, pp. 9–15, 2007.
[20]
M. D. Ger, “Electrochemical deposition of nickel/SiC composites in the presence of surfactants,” Materials Chemistry and Physics, vol. 87, no. 1, pp. 67–74, 2004.
[21]
M. C. Choua, M. D. Ger, S. T. Ke, Y. R. Huangc, and S. T. Wu, “The Ni-P-SiC nanocomposite produced by electro-codeposition,” Materials Chemistry and Physics, vol. 92, pp. 146–151, 2005.
[22]
T. Borkar and S. P. Harimkar, “Effect of electrodeposition conditions and reinforcement content on microstructure and tribological properties of nickel composite coatings,” Surface and Coatings Technology, vol. 205, no. 17-18, pp. 4124–4134, 2011.
[23]
A. Hovestad and L. J. J. Janssen, “Electrochemical codeposition of inert particles in a metallic matrix,” Journal of Applied Electrochemistry, vol. 25, no. 6, pp. 519–527, 1995.
[24]
S. C. Wang and W. C. J. Wei, “Kinetics of electroplating process of nano-sized ceramic particle/Ni composite,” Materials Chemistry and Physics, vol. 78, no. 3, pp. 574–580, 2003.
[25]
F. Hu and K. C. Chan, “Electrocodeposition behavior of Ni-SiC composite under different shaped waveforms,” Applied Surface Science, vol. 233, no. 1–4, pp. 163–171, 2004.
[26]
A. M. Rashidi and A. Amadeh, “Effect of electroplating parameters on microstructure of nanocrystalline nickel coatings,” Journal of Materials Science and Technology, vol. 26, no. 1, pp. 82–86, 2010.
[27]
R. Elansezhian, B. Ramamoorthy, and P. Kesavan Nair, “Effect of surfactants on the mechanical properties of electroless (Ni-P) coating,” Surface and Coatings Technology, vol. 203, no. 5-7, pp. 709–712, 2008.
[28]
L. Burzyńska, E. Rudnik, J. Koza, L. B?az, and Wojciech Szymański, “Electrodeposition and heat treatment of nickel/silicon carbide composites,” Surface and Coatings Technology, vol. 202, no. 12, pp. 2545–2556, 2008.
[29]
Z. Liao, Z. Huang, H. Hu, Y. Zhang, and Y. Tan, “Microscopic structure and properties changes of cassava stillage residue pretreated by mechanical activation,” Bioresource Technology, vol. 102, no. 17, pp. 7953–7958, 2011.
[30]
M. A. Siddig, S. Radiman, S. V. Muniandy, and L. S. Jan, “Structure of cubic phases in ternary systems Glucopone/water/hydrocarbon,” Colloids and Surfaces A, vol. 236, no. 1–3, pp. 57–67, 2004.
[31]
H. Gül, F. Kili?, S. Aslan, A. Alp, and H. Akbulut, “Characteristics of electro-co-deposited Ni-Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings,” Wear, vol. 267, no. 5-8, pp. 976–990, 2009.
[32]
H. Gül, F. Kili?, M. Uysal, S. Aslan, A. Alp, and H. Akbulut, “Effect of particle concentration on the structure and tribological properties of submicron particle SiC reinforced Ni metal matrix nanocomposite (MMC) coatings produced by electrodeposition,” Applied Surface Science, vol. 258, no. 10, pp. 4260–4267, 2012.
[33]
Y. N. Gou, W. J. Huang, R. C. Zeng, and Y. Zhu, “Influence of pH values on electroless Ni-P-SiC plating on AZ91D magnesium alloy,” Transactions of Nonferrous Metals Society of China, vol. 20, no. 2, pp. s674–s678, 2010.
[34]
M. Srivastava, V. K. W. Grips, and K. S. Rajam, “Electrochemical deposition and tribological behaviour of Ni and Ni-Co metal matrix composites with SiC nano-particles,” Applied Surface Science, vol. 253, no. 8, pp. 3814–3824, 2007.