Electrochemical behavior of five progressively alkylated thiazine dyes has been investigated at glassy carbon/montmorillonite and glassy carbon/zeolite electrodes. Quantitative characteristics, associated with the positions of peak potentials ( and ) and current ratios ( ), are measured with scan rates. The peak current observed in the modified electrodes is dependent on both the porosity and nature and number of sites involved in partitioning the complex into film. The values of diffusion coefficient for different dyes have been calculated from electrochemical data. It is suggested that in clay-modified electrode along with physical diffusion the process of electron hopping seems to be most likely. 1. Introduction Cyclic voltammetry (CV) is an important electroanalytical method used to analyze the electronically activated molecules and its corresponding chemical reactions. In other words, the CV response may provide necessary information to the kinetics along with the identification of side and final products of different electrochemical reactions [1]. Nanocrystalline thin films of various metal oxides, namely, SnO2, ZnO, and TiO2 with highly porous structure have drawn the interest of different researchers during the last few decades because of their use in different photochemical cells as photosensitive semiconductor electrodes [2–5]. These electrodes are being used in controlled analysis of some ions and some electroactive biological species, because of their use and selectivity [6, 7]. It has been found that dye-modified electrodes exhibit better electrochemical activity in comparison to that of bare electrodes [8]. A large number of electrochemists show their attention to the clay-modified electrodes due to the unique layered structure of the clay and its ion exchange properties. Different techniques, namely, covalent attachment and polymer-film casting on electrodes are generally employed for the modification in electrochemical and polyelectrochemical studies of dye-incorporated clay-modified electrodes. In an early work Kamat [9] observed a quasi-reversible oxidation wave of thionine in a clay-modified electrode which is comparable to the reversible wave of the same species in an unmodified electrode. The conclusion was that the dye continued its electrochemical identity even in the clay film. Other researchers also observed similar electrochemical behavior to modified electrodes coated with dyes [10, 11]. For a diffusion type cyclic voltammogram of a dye in a clay-modified electrode the peak current is linearly dependent on (where is the scan
References
[1]
D. K. Gosser Jr., Cyclic Voltammetry/Simulation and Analysis of Reaction Mechanisms, Wiley-VCH, New York, NY, USA, 1993.
[2]
E. Topoglidis, B. M. Discher, C. C. Moser, P. L. Dutton, and J. R. Durrant, “Functionalizing nanocrystalline metal oxide electrodes with robust synthetic redox proteins,” ChemBioChem, vol. 4, no. 12, pp. 1332–1339, 2003.
[3]
Y. N. Li, X. Yuan, J. Yang, Z. Ma, and B. Wang, “Electrochemical preparation and Li-insertion of nanocrystalline NiCuO2 thin film,” Journal of New Materials For Electrochemical Systems, vol. 7, no. 1, pp. 39–42, 2004.
[4]
S. Hotchandani, I. Bedja, R. W. Fessenden, and P. V. Kamat, “Electrochromic and photoelectrochromic behavior of thin WO3 films prepared from quantum size colloidal particles,” Langmuir, vol. 10, no. 1, pp. 17–22, 1994.
[5]
R. S. Mane, W. J. Lee, H. M. Pathan, and S. H. Han, “Nanocrystalline TiO2/ZnO thin films: fabrication and application to dye-sensitized solar cells,” Journal of Physical Chemistry B, vol. 109, no. 51, pp. 24254–24259, 2005.
[6]
?. Kalayci, G. Somer, and G. Ekmekci, “Preparation and application of a new glucose sensor based on iodide ion selective electrode,” Talanta, vol. 65, no. 1, pp. 87–91, 2005.
[7]
J. F. Rusling, Ed., Biomolecular Films: Design, Function, and Applications, Taylor & Francis, London, UK, 2005.
[8]
S. Yufang, Q. Gao, B. Qi, and X. Yang, “Electropolymerization of azure B on a screen-printed carbon electrode and its application to the determination of NADH in a flow injection analysis system,” Microchimica Acta, vol. 148, no. 3-4, pp. 335–341, 2004.
[9]
P. V. Kamat, “Electrochemistry and photoelectrochemistry of dye-incorporated clay-modified electrode,” Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 163, no. 1-2, pp. 389–394, 1984.
[10]
Q. Gao, X. Cui, F. Yang, Y. Ma, and X. Yang, “Preparation of poly(thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system,” Biosensors and Bioelectronics, vol. 19, no. 3, pp. 277–282, 2003.
[11]
R. Muthyala, Ed., Chemistry and Applications of Leuco Dyes, Springer, New York, NY, USA, 2002.
[12]
A. Fitch, “Clay-modified electrodes: a review,” Clays & Clay Minerals, vol. 38, no. 4, pp. 391–400, 1990.
[13]
H. Inoue and H. Yoneyama, “Electropolymerization of aniline intercalated in montmorillonite,” Journal of Electroanalytical Chemistry, vol. 233, no. 1-2, pp. 291–294, 1987.
[14]
J. F. Rusling, C. N. Shi, and S. L. Suib, “Electrocatalytic reactions in organized assemblies—part V: dehalogenation of 4,4'-dibromobiphenyl in cationic micelles at bare and clay-modified carbon electrodes,” Journal of Electroanalytical Chemistry, vol. 245, no. 1-2, pp. 331–337, 1988.
[15]
C. Mousty, “Sensors and biosensors based on clay-modified electrodes-new trends,” Applied Clay Science, vol. 27, no. 3-4, pp. 159–177, 2004.
[16]
H. Yin, Y. Zhou, and S. Ai, “Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol A detection,” Journal of Electroanalytical Chemistry, vol. 626, no. 1-2, pp. 80–88, 2009.
[17]
A. Yamagishi and A. Aramata, “A clay-modified electrode with stereoselectivity,” Journal of the Chemical Society, Chemical Communications, vol. 7, no. 7, pp. 452–453, 1984.
[18]
P. Joó, “Electrochemistry of dye- and surfactant-incorporated montmorillonite-modified electrodes,” Colloids and Surfaces, vol. 49, pp. 29–39, 1990.
[19]
T. M. Mudrini?, Z. D. Mojovi?, A. S. A. Rabi-Stankovi?, A. Z. Ivanovi?-?a?i?, A. D. Milutinovi?-Nikoli?, and D. M. Jovanovi?, “Oxidation of hydroxide ions at platinum modified zeolite electrode,” Hemijska Industrija, vol. 66, no. 5, pp. 759–767, 2012.
[20]
Y. Zhang, F. Chen, W. Shan et al., “Fabrication of ultrathin nanozeolite film modified electrodes and their electrochemical behavior,” Microporous and Mesoporous Materials, vol. 65, no. 2-3, pp. 277–285, 2003.
[21]
A. Chakraborty, M. Ali, and S. K. Saha, “Molecular interaction of organic dyes in bulk and confined media,” Spectrochimica Acta A, vol. 75, no. 5, pp. 1577–1583, 2010.
[22]
B. Velde, Introduction to Clay Minerals: Chemistry, Origins, Uses, and Environmental Significance, Chapman & Hall, New York, NY, USA, 1992.
[23]
F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert, and K. Tekaia-Elhsissen, “Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol,” Nanostructured Materials, vol. 11, no. 8, pp. 1277–1284, 1999.
[24]
P. K. Ghosh and A. J. Bard, “Clay-modified electrodes,” Journal of the American Chemical Society, vol. 105, no. 17, pp. 5691–5693, 1983.
[25]
A. Chakraborty, S. Ahmed, and S. K. Saha, “Electrochemical studies of progressively alkylated thiazine dyes on a glassy carbon electrode (GCE) in water, ethanol, and triton X-100 media,” Journal of Chemical and Engineering Data, vol. 55, no. 5, pp. 1908–1913, 2010.
[26]
S. Ahmed, Studies on physico-chemical characteristics of selected dyes and their interactions with smectite and zeolite [Ph.D. thesis], University of North Bengal, 1996.
[27]
A. Gürses, ?. Do?ar, M. Yal??n, M. A??ky?ld?z, R. Bayrak, and S. Karaca, “The adsorption kinetics of the cationic dye, methylene blue, onto clay,” Journal of Hazardous Materials, vol. 131, no. 1–3, pp. 217–228, 2006.
[28]
E. Errais, J. Duplay, F. Darragi et al., “Efficient anionic dye adsorption on natural untreated clay: kinetic study and thermodynamic parameters,” Desalination, vol. 275, no. 1–3, pp. 74–81, 2011.
[29]
S. A. Hussain, “Fluorescence resonance energy transfer between organic dyes in presence and absence of nanoclay laponite,” Noto-are 12537351: Education, 2012.
[30]
J. Wang, Analytical Electrochemistry, chapter 2, John Wiley & Sons, New York, NY, USA, 2000.
[31]
C. Amatore, J. M. Saveant, and D. Tessier, “Charge transfer at partially blocked surfaces: a model for the case of microscopic active and inactive sites,” Journal of Electroanalytical Chemistry, vol. 147, no. 1-2, pp. 39–51, 1983.
[32]
H. Chen, Z. Zhang, D. Cai et al., “Direct electrochemistry and electrocatalytic behavior of horseradish peroxidase on attapulgite clay modified electrode,” Analytical Sciences, vol. 27, no. 6, article 613, 2011.
[33]
P. H. Sackett, J. S. Mayausky, T. Smith, S. Kalus, and R. L. McCreery, “Side-chain effects on phenothiazine cation radical reactions,” Journal of Medicinal Chemistry, vol. 24, no. 11, pp. 1342–1347, 1981.
[34]
J. W. Stucki, K. Lee, L. Zhang, and R. A. Larson, “Effects of iron oxidation state on the surface and structural properties of smectites,” Pure and Applied Chemistry, vol. 74, no. 11, pp. 2145–2158, 2003.