全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electrochemical Behavior of Malachite Green in Aqueous Solutions of Ionic Surfactants

DOI: 10.1155/2013/839498

Full-Text   Cite this paper   Add to My Lib

Abstract:

Electrochemical behavior of malachite green (MG) oxalate in aqueous solution was studied in the presence of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), and an anionic surfactant, sodium dodecyl sulfate (SDS) at a glassy carbon electrode using cyclic voltammetry. The electrochemical oxidation of MG has been characterized as an electrochemically irreversible diffusion-controlled process. Oxidative peak current sharply decreased with increasing SDS concentration, while a slight increase with increasing [CTAB] was apparent. The apparent diffusion coefficient, the surface reaction rate constant, and the electron transfer coefficient of MG clearly show correlation of the electrochemical behavior with the dissolved states of the surfactants. Electrochemical observations together with spectrophotometric results at varying surfactant concentrations provide evidence of interaction of MG with the surfactants to varying extent depending on the type of the surfactant and the concentration. 1. Introduction Triphenylmethane (TPM) dyes, an important class of synthetic organic compounds, have been a promising material for diverse applications, which inter alia include the following: as fungicides in aquaculture, as parasiticides in pharmaceuticals, as dye materials in industry, and as redox mediators, bioprobes, and pH indicators in both fundamental and applied sciences [1–6]. A proper understanding and development of fundamental knowledge base of physicochemical properties of TPM dyes have therefore attracted significant attention. Techniques so far employed for this are polarography [7], conductometry [8, 9], potentiometry [10], spectrophotometry [11, 12], electrochemical methods [13], membrane selective electrode [14], and so on. Dyes of TPM backbones such as malachite green (MG), crystal violet [15], ethyl violet [16], and victoria blue B [17] are electrochemically active, and recent surge of interest has been the exploration of the redox behavior of such dyes. Among the TPM dyes the prospect of MG (chemical structure shown in Scheme 1) for versatile applications [1] prompted many researchers to study the electrochemical behavior of MG for development of electrochemically switchable devices. The electrochemical oxidation of MG occurs at -containing lone-pair electron, and the reduction process is due to reduction of oxidized tertiary amino group of MG [2, 10]. In acidic aqueous solutions, the anodic oxidation of MG leads to the formation of the oxidized form of -tetramethylbenzidine (TMB) ([ -biphenyl]- -diamine), that is, TMBOx whereas the

References

[1]  S. J. Culp and F. A. Beland, “Malachite green: a toxicological review,” International Journal of Toxicology, vol. 15, no. 3, pp. 219–238, 1996.
[2]  P. Ngamukot, T. Charoenraks, O. Chailapakul, S. Motomizu, and S. Chuanuwatanakul, “Cost-effective flow cell for the determination of malachite green and leucomalachite green at a boron-doped diamond thin-film electrode,” Analytical Sciences, vol. 22, no. 1, pp. 111–116, 2006.
[3]  K. K. Karukstis and A. V. Gulledge, “Analysis of the solvatochromic behavior of the disubstituted triphenylmethane dye brilliant green,” Analytical Chemistry, vol. 70, no. 19, pp. 4212–4217, 1998.
[4]  X. Niu, W. Zhang, N. Zhao, and W. Sun, “Voltammetric determination of heparin based on its interaction with malachite green,” Bulletin of the Chemical Society of Ethiopia, vol. 22, no. 2, pp. 162–172, 2008.
[5]  K. Qu, X. Zhang, Z. Lv et al., “Simultaneous detection of diethylstilbestrol and malachite green using conductive carbon black paste electrode,” International Journal of Electrochemical Science, vol. 7, no. 3, pp. 1827–1839, 2012.
[6]  R. M. Uda and K. Kimura, “Microscopic location of photosensitive malachite Green surfactant in mixed micelle and its photoinduced enhancement of solubilizing power,” Colloid and Polymer Science, vol. 285, no. 6, pp. 699–704, 2007.
[7]  R. C. Kaye and H. I. Stonehill, “The polarographic reduction of crystal-violet, brilliant-green, malachite-green, and auramine,” Journal of the Chemical Society, vol. 618, pp. 3231–3239, 1952.
[8]  J. Mata, D. Varade, and P. Bahadur, “Aggregation behavior of quaternary salt based cationic surfactants,” Thermochimica Acta, vol. 428, no. 1-2, pp. 147–155, 2005.
[9]  M. N. Khan and A. Sarwar, “Study of dye-surfactant interaction: aggregation and dissolution of yellowish in N-dodecyl pyridinum chloride,” Fluid Phase Equilibria, vol. 239, no. 2, pp. 166–171, 2006.
[10]  S. M. Chen, J. Y. Chen, and R. Thangamuthu, “Electrochemical preparation of poly(malachite green) film modified Nafion-coated glassy carbon electrode and its electrocatalytic behavior towards NADH, dopamine and ascorbic acid,” Electroanalysis, vol. 19, no. 14, pp. 1531–1538, 2007.
[11]  L. Antonov, G. Gergov, V. Petrov, M. Kubista, and J. Nygren, “UV-Vis spectroscopic and chemometric study on the aggregation of ionic dyes in water,” Talanta, vol. 49, no. 1, pp. 99–106, 1999.
[12]  A. M. R. Kabir and M. A. B. H. Susan, “Kinetics of the alkaline hydrolysis of crystal violet n aqueous solution influenced by anionic surfactants,” Journal of Saudi Chemical Society, vol. 12, no. 4, pp. 543–554, 2008.
[13]  X. Hu, K. Jiao, W. Sun, and J.-Y. You, “Electrochemical and spectroscopic studies on the interaction of malachite green with DNA and its application,” Electroanalysis, vol. 18, no. 6, pp. 613–620, 2006.
[14]  N. S. Kobotaeva, E. E. Sirotkina, and E. V. Mikubaeva, “Electrochemical oxidation of tritane dyes,” Russian Journal of Electrochemistry, vol. 42, no. 3, pp. 268–271, 2006.
[15]  V. V. Perekotii, Z. A. Temerdashev, T. G. Tsyupko, and E. A. Palenaya, “Electrochemical behavior of crystal violet on glassy carbon electrodes,” Journal of Analytical Chemistry, vol. 57, no. 5, pp. 448–451, 2002.
[16]  J.-P. Song, Y.-J. Guo, S.-M. Shuang, and C. Dong, “Study on the inclusion interaction of ethyl violet with cyclodextrins by MWNTs/Nafion modified glassy carbon electrode,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 68, no. 3-4, pp. 467–473, 2010.
[17]  B. Xu, K. Jiao, W. Sun, and X. Zhang, “Recognition and determination of DNA using victoria blue b as electrochemical probe,” International Journal of Electrochemical Science, vol. 2, no. 5, pp. 406–417, 2007.
[18]  Z. Galus and R. N. Adams, “The anodic oxidation of triphenylmethane dyes,” Journal of the American Chemical Society, vol. 86, no. 9, pp. 1666–1671, 1964.
[19]  D. A. Hall, M. Sakuma, and P. J. Elving, “Voltammetric oxidation of triphenylmethane dyes at platinum in liquid sulphur dioxide,” Electrochimica Acta, vol. 11, no. 3, pp. 337–350, 1966.
[20]  M. M. Rahman, M. Y. A. Mollah, M. M. Rahman, and M. A. B. H. Susan, “Electrochemical behavior of malachite green on a glassy carbon electrode: a cyclic voltammetric study,” Journal of Bangladesh Chemical Society, vol. 24, no. 1, pp. 25–36, 2011.
[21]  T. Saji, K. Hoshino, and S. Aoyagui, “Reversible formation and disruption of micelles by control of the redox state of the head group,” Journal of the American Chemical Society, vol. 107, no. 24, pp. 6865–6868, 1985.
[22]  Y. Takeoka, T. Aoki, K. Sanui, N. Ogata, and M. Watanabe, “Electrochemical studies of a redox-active surfactant. Correlation between electrochemical responses and dissolved states,” Langmuir, vol. 12, no. 2, pp. 487–493, 1996.
[23]  M. A. B. H. Susan, K. Tani, and M. Watanabe, “Surface activity and redox behavior of nonionic surfactants containing an anthraquinone group as the redox-active site,” Colloid and Polymer Science, vol. 277, no. 12, pp. 1125–1133, 1999.
[24]  M. A. B. H. Susan, M. Begum, Y. Takeoka, and M. Watanabe, “Effect of pH and the extent of micellization on the redox behavior of non-ionic surfactants containing an anthraquinone group,” Journal of Electroanalytical Chemistry, vol. 481, no. 2, pp. 192–199, 2000.
[25]  M. A. B. H. Susan, M. Begum, Y. Takeoka, and M. Watanabe, “Study of the correlation of the cyclic voltammetric responses of a nonionic surfactant containing an anthraquinone group with the dissolved states,” Langmuir, vol. 16, no. 7, pp. 3509–3516, 2000.
[26]  M. A. Haque, M. M. Rahman, and M. A. B. H. Susan, “Aqueous electrochemistry of anthraquinone and its correlation with the dissolved states of a cationic surfactant,” Journal of Solution Chemistry, vol. 40, no. 5, pp. 861–875, 2011.
[27]  M. A. Haque, M. M. Rahman, and M. A. B. H. Susan, “Electrochemical behavior of anthraquinone in reverse micelles and microemulsions of cetyltrimethylammonium bromide,” Journal of Solution Chemistry, vol. 41, no. 3, pp. 447–457, 2012.
[28]  I. Mahmud, A. J. F. Samed, M. A. Haque, and M. A. B. H. Susan, “Electrochemical behavior of anthraquinone in aqueous solution in presence of a non-ionic surfactant,” Journal of Saudi Chemical Society, vol. 15, no. 3, pp. 203–208, 2011.
[29]  A. Pedraza, M. D. Sicilia, S. Rubio, and D. Pérez-Bendito, “Determination of aromatic hydrotropic drugs in pharmaceutical preparations by the surfactant-binding degree method,” Analyst, vol. 130, no. 7, pp. 1102–1107, 2005.
[30]  B. Gohain, B. Boruah, P. M. Saikia, and R. K. Dutta, “Premicellar and micelle formation behavior of aqueous anionic surfactants in the presence of triphenylmethane dyes: protonation of dye in ion pair micelles,” Journal of Physical Organic Chemistry, vol. 23, no. 3, pp. 211–219, 2010.
[31]  W. Huang, C. Yang, W. Qu, and S. Zhang, “Voltammetric determination of malachite green in fish samples based on the enhancement effect of anionic surfactant,” Russian Journal of Electrochemistry, vol. 44, no. 8, pp. 946–951, 2008.
[32]  L. Liu, F. Zhao, F. Xiao, and B. Zeng, “Improved voltammetric response of malachite green at a multi-walled carbon nanotubes coated glassy carbon electrode in the presence of surfactant,” International Journal of Electrochemical Science, vol. 4, no. 4, pp. 525–534, 2009.
[33]  K. Yamamoto and S. Motomizu, “Liquid-liquid distribution of ion-associates of acidic dyes with quaternary ammonium counter-ions,” Talanta, vol. 38, no. 5, pp. 477–482, 1991.
[34]  M. Mukhopadhyay, C. Sen Varma, and B. B. Bhowmik, “Photo-induced electron transfer in surfactant solutions containing thionine dye,” Colloid and Polymer Science, vol. 268, no. 5, pp. 447–451, 1990.
[35]  W. Biedermann and A. Datyner, “The interaction of nonionic dyestuffs with sodium dodecyl sulfate and its correlation with lipophilic parameters,” Journal of Colloid and Interface Science, vol. 82, no. 2, pp. 276–285, 1981.
[36]  Z. Galus and R. N. Adams, “Anodic oxidation studies of N,N-dimethylaniline. II. Stationary and rotated disk studies at inert electrodes,” Journal of the American Chemical Society, vol. 84, no. 11, pp. 2061–2065, 1962.
[37]  A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamental and Applications, John Wiley & Sons, Beijing, China, 2nd edition, 2004.
[38]  R. S. Nicholson and I. Shain, “Theory of stationary electrode polarography single scan and cyclic methods applied to reversible, irreversible, and kinetic systems,” Analytical Chemistry, vol. 36, no. 4, pp. 706–723, 1964.
[39]  K. Jiao, T. Yang, and S. Niu, “Thin-layer spectroelectrochemical study of 3,3′,5,5′-tetramethylbenzidine at SnO2:F film optically transparent electrode,” Science in China B, vol. 47, no. 4, pp. 267–275, 2004.
[40]  C. M. A. Brett and A. M. O. Brett, Electrochemistry, Principles, Methods, and Applications, Oxford University Press, NewYork, NY, USA, 1994.
[41]  Z. Zhu and N.-Q. Li, “Electrochemical studies of 9,10-anthraquinone interacting with hemoglobin and determination of hemoglobin,” Mikrochimica Acta, vol. 130, no. 4, pp. 301–308, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133