The corrosion inhibition efficiency of a potential polynuclear Schiff base, (s)-2-(anthracene-9 (10H)-ylidene amino)-5-guanidinopentanoic acid (A9Y5GPA), on carbon steel (CS) in 1?M hydrochloric acid solution has been investigated using weight loss measurements, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization studies. The corrosion inhibition efficiencies of parent amine [(s)-2-amino-5-guanidinopentanoic acid] and parent ketone (anthracene-9 (10H)-one) on carbon steel in 1.0?M hydrochloric acid solution have also been investigated using weight loss studies. The electrochemical and weight loss data established that the inhibition efficiency on CS increases with the increase in the concentration of inhibitor, A9Y5GPA. The adsorption of A9Y5GPA obeys the Langmuir adsorption isotherm. Thermodynamic parameters ( , ) were calculated using the adsorption isotherm. Activation parameters of the corrosion process ( , and ) were also calculated from the corrosion rates obtained from temperature studies. Tafel plot analysis revealed that A9Y5GPA acts as a mixed-type inhibitor. A probable inhibition mechanism was also proposed. Surface morphology of the carbon steel specimens in the presence and absence of the inhibitor was evaluated by SEM analysis. 1. Introduction The use of hydrochloric acid in metal industries for acid pickling, descaling, and cleaning process is the major reason for the increase in the dissolution rate of carbon steel. The use of certain organic compounds as inhibitors is the most practical method to prevent corrosion of the carbon steel (CS) in acidic media [1–3]. Compounds with -bonds generally exhibit good inhibitive properties due to interaction of -orbital with the metal surface [4]. Schiff bases are organic molecules possessing azomethine linkage and many of them act as effective potential corrosion inhibitors [5–8]. Increasing efforts have been made to study the corrosion behavior of metals and mechanism of inhibition during the past decade mainly through electrochemical investigations [9–11]. The present investigation was undertaken to examine the corrosion inhibition behavior of a novel polynuclear Schiff base (A9Y5GPA) derived from anthracene-9 (10H)-one and (s)-2-amino-5-guanidinopentanoic acid in 1?M?HCl solution on CS at different temperatures. The study was performed by weight loss measurements, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization analysis. 2. Experimental 2.1. Inhibitor Polynuclear Schiff base (A9Y5GPA) was obtained by the condensation of equimolar mixture
References
[1]
O. James, N. C. Oforka, and O. K. Abiola, “Inhibition of acid corrosion of mild steel by pyridoxal and pyridoxol hydrochlorides,” International Journal of Electrochemical Science, vol. 2, pp. 278–284, 2007.
[2]
S. A. Abd El-Maksoud, “The effect of organic compounds on the electrochemical behaviour of steel in acidic media. A review,” International Journal of Electrochemical Science, vol. 3, pp. 528–555, 2008.
[3]
P. R. Vinod, T. K. Joby, K. S. Shaju, and P. Aby, “Corrosion inhibition investigations of 3- acetylpyridine semicarbazone on carbon steel in hydrochloric acid medium,” Research on Chemical Intermediates, 2013.
[4]
E. E. Ebenso, P. C. Okafor, O. E. Offiong, B. I. Ita, U. J. Ibok, and U. J. Ekpe, “Comparative investigation into the kinetics of corrosion inhibition of aluminium alloy AA 1060 in acidic medium,” Bulletin of Electrochemistry, vol. 17, no. 10, pp. 459–464, 2001.
[5]
T. A. Sethi, R. K. Chaturvedi, Upadyay, and S. P. Marthur, “Corrosion inhibitory effects of some Schiff’s bases on mild steel in acid media,” Journal of the Chilean Chemical Society, vol. 52, pp. 1206–1213, 2007.
[6]
K. P. Srivastva, A. Kumar, and R. Singh, “Bivalent transition metal complexes of tridentate Schiff base ligands: an ecofriendly study,” Journal of Chemical and Pharmaceutical Research, vol. 2, pp. 68–77, 2010.
[7]
S. B. Ade, M. N. Deshpande, and D. G. Kolhatkar, “Corrosion a universal environmental problem: a role of schiff base metal complexes as inhibitors,” Journal of Chemical and Pharmaceutical Research, vol. 4, no. 2, pp. 1033–1035, 2012.
[8]
P. Aby, T. K. Joby, P. R. Vinod, and K. S. Shaju, “Electrochemical and gravimetric corrosion inhibition investigations of a heterocyclic Schiff base derived from 3-formylindole,” IOSR Journal of Applied Chemistry, vol. 1, pp. 17–23, 2012.
[9]
S. Deng, X. Li, and H. Fu, “Alizarin violet 3B as a novel corrosion inhibitor for steel in HCl, H2SO4 solutions,” Corrosion Science, vol. 53, no. 11, pp. 3596–3602, 2011.
[10]
X. Li, S. Deng, and H. Fu, “Blue tetrazolium as a novel corrosion inhibitor for cold rolled steel in sulfuric acid solution,” Materials Chemistry and Physics, vol. 129, no. 3, pp. 696–700, 2011.
[11]
K. S. Shaju, T. K. Joby, P. R. Vinod, and P. Aby, “Synergistic effect of KI on corrosion inhibition of mild steel by polynuclear Schiff base in sulphuric acid,” ISRN Corrosion, vol. 2012, Article ID 425878, 8 pages, 2012.
[12]
ASTM, “standard recommended practice for the laboratory immersion corrosion testing of metals,” ASTM G-31-72, ASTM, Philadelphia, Pa, USA, 1990.
[13]
K. C. Emregül and O. Atakol, “Corrosion inhibition of iron in 1 M HCl solution with Schiff base compounds and derivatives,” Materials Chemistry and Physics, vol. 83, no. 2-3, pp. 373–379, 2004.
[14]
A. Raman and P. Labine, Reviews on Corrosion Inhibitor Science and Technology, NACE, Houston, Tex, USA, 1986.
[15]
H. Ashassi-Sorkhabi, B. Shaabani, and D. Seifzadeh, “Effect of some pyrimidinic Shciff bases on the corrosion of mild steel in hydrochloric acid solution,” Electrochimica Acta, vol. 50, no. 16-17, pp. 3446–3452, 2005.
[16]
L. Elkadi, B. Mernari, M. Traisnel, F. Bentiss, and M. Lagrenée, “The inhibition action of 3,6-bis(2-methoxyphenyl)-1,2-dihydro-1,2,4,5-tetrazine on the corrosion of mild steel in acidic media,” Corrosion Science, vol. 42, no. 4, pp. 703–719, 2000.
[17]
M. Bouklah, B. Hammouti, M. Lagrenée, and F. Bentiss, “Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium,” Corrosion Science, vol. 48, no. 9, pp. 2831–2842, 2006.
[18]
E. Cano, J. L. Polo, A. L. A. Iglesia, and J. M. Bastidas, “A study on the adsorption of benzotriazole on copper in hydrochloric acid using the inflection point of the isotherm,” Adsorption, vol. 10, no. 3, pp. 219–225, 2004.
[19]
F. Bentiss, M. Lebrini, and M. Lagrenée, “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/ hydrochloric acid system,” Corrosion Science, vol. 47, no. 12, pp. 2915–2931, 2005.
[20]
W.-H. Li, Q. He, S.-T. Zhang, C.-L. Pei, and B.-R. Hou, “Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium,” Journal of Applied Electrochemistry, vol. 38, no. 3, pp. 289–295, 2008.
[21]
M. Bouklah, N. Benchat, B. Hammouti, A. Aouniti, and S. Kertit, “Thermodynamic characterisation of steel corrosion and inhibitor adsorption of pyridazine compounds in 0.5 M H2SO4,” Materials Letters, vol. 60, no. 15, pp. 1901–1905, 2006.
[22]
A. R. Sathiya Priya, V. S. Muralidharam, and A. Subramannia, “Development of novel acidizing inhibitors for carbon steel corrosion in 15% boiling hydrochloric acid,” Corrosion, vol. 64, pp. 541–552, 2008.
[23]
M. El Azhar, B. Mernari, M. Traisnel, F. Bentiss, and M. Lagrenée, “Corrosion inhibition of mild steel by the new class of inhibitors [2,5-bis(n-pyridyl)-1,3,4-thiadiazoles] in acidic media,” Corrosion Science, vol. 43, no. 12, pp. 2229–2238, 2001.
[24]
A. Yurt, A. Balaban, S. U. Kandemir, G. Bereket, and B. Erk, “Investigation on some Schiff bases as HCl corrosion inhibitors for carbon steel,” Materials Chemistry and Physics, vol. 85, no. 2-3, pp. 420–426, 2004.
[25]
J. R. Macdonald, Theory in Impedance Spectroscopy, John Wiley & Sons, New York, NY, USA, 1987, edited by W. B. Johnson and J. R. Macdonald.
[26]
A. K. Singh, S. K. Shukla, M. Singh, and M. A. Quraishi, “Inhibitive effect of ceftazidime on corrosion of mild steel in hydrochloric acid solution,” Materials Chemistry and Physics, vol. 129, no. 1-2, pp. 68–76, 2011.
[27]
M. MaCafferty and N. Hackerman, “Double layer capacitance of iron and corrosion inhibition with polymethylene diamines,” Journal of the Electrochemical Society, vol. 119, pp. 146–154, 1972.
[28]
X. Li, S. Deng, and H. Fu, “Synergism between red tetrazolium and uracil on the corrosion of cold rolled steel in H2SO4 solution,” Corrosion Science, vol. 51, no. 6, pp. 1344–1355, 2009.
[29]
E. S. Ferreira, C. Giacomelli, F. C. Giacomelli, and A. Spinelli, “Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel,” Materials Chemistry and Physics, vol. 83, no. 1, pp. 129–134, 2004.
[30]
Q. Qu, Z. Hao, S. Jiang, L. Li, and W. Bai, “Synergistic inhibition between dodecylamine and potassium iodide on the corrosion of cold rolled steel in 0.1 M phosphoric acid,” Materials and Corrosion, vol. 59, no. 11, pp. 883–888, 2008.
[31]
F. Bentiss, M. Traisnel, and M. Lagrenee, “The substituted 1,3,4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media,” Corrosion Science, vol. 42, no. 1, pp. 127–146, 2000.
[32]
D. Paul Schweinsberg, G. A. George, A. K. Nanayakkara, and D. A. Steinert, “The protective action of epoxy resins and curing agents-inhibitive effects on the aqueous acid corrosion of iron and steel,” Corrosion Science, vol. 28, no. 1, pp. 33–42, 1988.
[33]
H. Shokry, M. Yuasa, I. Sekine, R. M. Issa, H. Y. El-Baradie, and G. K. Gomma, “Corrosion inhibition of mild steel by Schiff base compounds in various aqueous solutions: part 1,” Corrosion Science, vol. 40, no. 12, pp. 2173–2186, 1998.
[34]
A. K. Singh and M. A. Quraishi, “Inhibiting effects of 5-substituted isatin-based Mannich bases on the corrosion of mild steel in hydrochloric acid solution,” Journal of Applied Electrochemistry, vol. 40, no. 7, pp. 1293–1306, 2010.