全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reduced Graphene Oxide Supported Antimony Species for High-Performance Supercapacitor Electrodes

DOI: 10.1155/2014/826832

Full-Text   Cite this paper   Add to My Lib

Abstract:

Antimony species was chemically anchored on graphene oxide using antimony (III) chloride precursor and then converted to the reduced graphene oxide-antimony species composite by a well-established polyol method. The resultant composite was successfully used as supercapacitor electrodes in a two-electrode symmetric system with aqueous electrolyte. The specific capacitance calculated from the galvanostatic charge/discharge curves obtained for this composite was 289?F/g. The enhanced capacitance results were confirmed by the electrochemical impedance spectroscopy and cyclic voltammetry. The high capacitance of the reduced graphene oxide-antimony species composite arises from the combination of double-layer charging and pseudocapacitance caused by the Faradaic reactions of the intercalated antimony species and residual surface-bonded functional groups. 1. Introduction Antimony is widely used in semiconductors, antifriction alloys, small arms and tracer bullets, and cable sheathing and in large quantities as a flame retarding additive [1]. It has been widely used in the past to enhance the hardness and the mechanical stability of lead alloys in batteries [2]. However, its usage was gradually limited because of toxicity, mostly of the trivalent species. In the lead batteries, antimony is generally known to be able to pass on a negative electrode through corrosion of current leads and decrease in the battery service life [3]. The detailed description of antimony reactions in lead batteries was given by Pavlov et al. [4], who suggested that the influence of the antimony on the lead battery work depends on antimony species used in battery preparation. In case of the lead electrodes immersed in the antimony solution, formation of ions is observed that passivates the lead and decreases the capacitance. While for Pb-Sb alloys in sulfuric acid solution formation of antimony complexes of the type is observed that have a beneficial effect on the capacitance of electrodes. It is well known that antimony corrodes easily but results [5] suggest that the antimony-containing corrosion layer discharges with difficulty, and thus the active material discharges more readily than the corrosion layer and a passivation layer does not form at the grid/active material interface. So it appears that addition of antimony to the active material of electrode effectively retards capacitance loss. These opinions seem to be true because antimony has been thoroughly examined as an additive in newer energy sources, that is, lithium-ion batteries, liquid metal batteries, and fuel cells. In

References

[1]  M. Filella, N. Belzile, and Y.-W. Chen, “Antimony in the environment: a review focused on natural waters I. Occurence,” Earth-Science Reviews, vol. 57, no. 1-2, pp. 125–176, 2002.
[2]  M. Kentner, M. Leinemann, K.-H. Schaller, D. Weltle, and G. Lehnert, “External and internal antimony exposure in starter battery production,” International Archives of Occupational and Environmental Health, vol. 67, no. 2, pp. 119–123, 1995.
[3]  Y. B. Kamenev, A. V. Kiselevich, E. I. Ostapenko, and Y. V. Skachkov, “Antimony-free alloys for unattended (sealed) lead batteries,” Russian Journal of Applied Chemistry, vol. 75, no. 4, pp. 548–551, 2002.
[4]  D. Pavlov, A. Dakhouche, and T. Rogachev, “Influence of antimony ions and PbSO4 content in the corrosion layer on the properties of the grid/active mass interface in positive lead-acid battery plates,” Journal of Applied Electrochemistry, vol. 27, no. 6, pp. 720–730, 1997.
[5]  M. Kosai, S. Yasukawa, S. Osumi, and M. Tsubota, “Effect of antimony on premature capacity loss of lead/acid batteries,” Journal of Power Sources, vol. 67, no. 1-2, pp. 43–48, 1997.
[6]  J. Yang, M. Winter, and J. O. Besenhard, “Small particle size multiphase Li-alloy anodes for lithium-ion-batteries,” Solid State Ionics, vol. 90, no. 1–4, pp. 281–287, 1996.
[7]  A. Trifonova, M. Wachtler, M. Winter, and J. O. Besenhard, “Sn-Sb and Sn-Bi alloys as anode materials for lithium-ion batteries,” Ionics, vol. 8, no. 5-6, pp. 321–328, 2002.
[8]  A. Dailly, P. Willmann, and D. Billaud, “Synthesis, characterization and electrochemical performances of new antimony-containing graphite compounds used as anodes for lithium-ion batteries,” Electrochimica Acta, vol. 48, no. 3, pp. 271–278, 2002.
[9]  A. Dailly, R. Schneider, D. Billaud, Y. Fort, and P. Willmann, “New graphite-antimony composites as anodic materials for lithium-ion batteries. Preparation, characterisation and electrochemical performance,” Electrochimica Acta, vol. 47, no. 26, pp. 4207–4212, 2002.
[10]  A. Dailly, R. Schneider, D. Billaud, Y. Fort, and J. Ghanbaja, “Nanometric antimony powder synthesis by activated alkaline hydride reduction of antimony pentachloride,” Journal of Nanoparticle Research, vol. 5, no. 3-4, pp. 389–393, 2003.
[11]  S. Saadat, Y. Y. Tay, J. Zhu et al., “Template-free electrochemical deposition of interconnected ZnSb nanoflakes for Li-Ion battery anodes,” Chemistry of Materials, vol. 23, no. 4, pp. 1032–1038, 2011.
[12]  J. M. Mosby and A. L. Prieto, “Direct electrodeposition of Cu2Sb for lithium-ion battery anodes,” Journal of the American Chemical Society, vol. 130, no. 32, pp. 10656–10661, 2008.
[13]  F. D. Wu, M. Wu, and Y. Wang, “Antimony-doped tin oxide nanotubes for high capacity lithium storage,” Electrochemistry Communications, vol. 13, no. 5, pp. 433–436, 2011.
[14]  F. Montilla, E. Morallón, A. de Battisti, A. Benedetti, H. Yamashita, and J. L. Vázquez, “Preparation and characterization of antimony-doped tin dioxide electrodes. Part 2. XRD and EXAFS characterization,” Journal of Physical Chemistry B, vol. 108, no. 16, pp. 5044–5050, 2004.
[15]  Y. Wang, I. Djerdj, B. Smarsly, and M. Antonietti, “Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode,” Chemistry of Materials, vol. 21, no. 14, pp. 3202–3209, 2009.
[16]  S. Sladkevich, J. Gun, P. V. Prikhodchenko et al., “The formation of a peroxoantimonate thin film coating on graphene oxide (GO) and the influence of the GO on its transformation to antimony oxides and elemental antimony,” Carbon, vol. 50, no. 15, pp. 5463–5471, 2012.
[17]  R. A. Nistor, D. M. Newns, and G. J. Martyna, “The role of chemistry in graphene doping for carbon-based electronics,” ACS Nano, vol. 5, no. 4, pp. 3096–3103, 2011.
[18]  Y. Leng, W. Guo, S. Su, C. Yi, and L. Xing, “Removal of antimony(III) from aqueous solution by graphene as an adsorbent,” Chemical Engineering Journal, vol. 211-212, pp. 406–411, 2012.
[19]  M. Zhu, C. J. Weber, Y. Yang et al., “Chemical and electrochemical ageing of carbon materials used in supercapacitor electrodes,” Carbon, vol. 46, no. 14, pp. 1829–1840, 2008.
[20]  C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388, 2008.
[21]  A. A. Balandin, S. Ghosh, W. Bao et al., “Superior thermal conductivity of single-layer graphene,” Nano Letters, vol. 8, no. 3, pp. 902–907, 2008.
[22]  X. Zhu, H. Dai, J. Hu, L. Ding, and L. Jiang, “Reduced graphene oxide-nickel oxide composite as high performance electrode materials for supercapacitors,” Journal of Power Sources, vol. 203, pp. 243–249, 2012.
[23]  L. Wang, D. Wang, J. Zhu, and X. Liang, “Preparation of Co3O4 nanoplate/graphene sheet composites and their synergistic electrochemical performance,” Ionics, vol. 19, no. 2, pp. 215–220, 2013.
[24]  Y. Wang, T. Brezesinski, M. Antonietti, and B. Smarsly, “Ordered mesoporous Sb-, Nb-, and Ta-doped SnO2 thin films with adjustable doping levels and high electrical conductivity,” ACS Nano, vol. 3, no. 6, pp. 1373–1378, 2009.
[25]  L. Staudenmaier, “Verfahren zur Darstellung der Graphitsaure,” Berichte der Deutschen Chemischen Gesellschaft, vol. 31, no. 2, pp. 1481–1487, 1898.
[26]  Z. Liu, J. Y. Lee, W. Chen, M. Han, and L. M. Gan, “Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles,” Langmuir, vol. 20, no. 1, pp. 181–187, 2004.
[27]  H.-W. Ha, I. Y. Kim, S.-J. Hwang, and R. S. Ruoff, “One-pot synthesis of platinum nanoparticles embedded on reduced graphene oxide for oxygen reduction in methanol fuel cells,” Electrochemical and Solid-State Letters, vol. 14, no. 7, pp. B70–B73, 2011.
[28]  L. A. Zemnukhova and A. E. Panasenko, “A novel composite material based on antimony(III) oxide,” Journal of Solid State Chemistry, vol. 201, pp. 9–12, 2013.
[29]  K. Oorts, E. Smolders, F. Degryse et al., “Solubility and toxicity of antimony trioxide (Sb2O3) in soil,” Environmental Science & Technology, vol. 42, no. 12, pp. 4378–4383, 2008.
[30]  M. Filella, N. Belzile, and Y.-W. Chen, “Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry,” Earth-Science Reviews, vol. 59, no. 1–4, pp. 265–285, 2002.
[31]  S. Pei and H. M. Cheng, “The reduction of graphene oxide,” Carbon, vol. 50, no. 9, pp. 3210–3228, 2012.
[32]  M. D. Stoller and R. S. Ruoff, “Best practice methods for determining an electrode material's performance for ultracapacitors,” Energy & Environmental Science, vol. 3, no. 9, pp. 1294–1301, 2010.
[33]  B. Xu, S. Yue, Z. Sui et al., “What is the choice for supercapacitors: graphene or graphene oxide?” Energy & Environmental Science, vol. 4, no. 8, pp. 2826–2830, 2011.
[34]  Y. Chen, X. Zhang, D. Zhang, P. Yu, and Y. Ma, “High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes,” Carbon, vol. 49, no. 2, pp. 573–580, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133