全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Choosing the Right Spatial Weighting Matrix in a Quantile Regression Model

DOI: 10.1155/2013/158240

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper proposes computationally tractable methods for selecting the appropriate spatial weighting matrix in the context of a spatial quantile regression model. This selection is a notoriously difficult problem even in linear spatial models and is even more difficult in a quantile regression setup. The proposal is illustrated by an empirical example and manages to produce tractable models. One important feature of the proposed methodology is that by allowing different degrees and forms of spatial dependence across quantiles it further relaxes the usual quantile restriction attributable to the linear quantile regression. In this way we can obtain a more robust, with regard to potential functional misspecification, model, but nevertheless preserve the parametric rate of convergence and the established inferential apparatus associated with the linear quantile regression approach. 1. The Spatial Quantile Regression Model The spatial quantile regression model [1] is a straightforward quantile regression generalisation of the popular, in spatial econometrics, linear spatial lag model. More specifically it can be written as where is a spatially lagged dependent variable, specified via a predetermined spatial weighting matrix , is the design matrix containing the independent variables (covariates), and is a residuals vector. Here we only have one spatially lagged dependent variable but this is not an essential assumption, and more than one spatial weighting matrix can be easily incorporated. This representation is similar to the linear spatial lag regression model, but here coefficients are allowed to vary with the quantile, rather than being assumed fixed. This model has some attractive properties. First, the original motivation for Kostov’s [1] proposal is to alleviate the potential bias arising from inappropriate functional form assumptions in a spatial model. In simple terms the underlying logic is as follows. Omitting spatial dependence typically introduces estimation bias in the presence of spatial lag dependence when the wrong functional form specification is employed. Hence a natural way to circumvent the problem is to estimate the underlying function nonparametrically. The sample sizes used in many empirical studies are however often too small for efficient application of nonparametric methods. Semiparametric methods could then be used to alleviate the problem. The linear quantile regression is such a semi-parametric method. Although it cannot be guaranteed to entirely eliminate the adverse effects of functional form assumptions, such methods can

References

[1]  P. Kostov, “A spatial quantile regression hedonic model of agricultural land prices,” Spatial Economic Analysis, vol. 4, no. 1, pp. 53–72, 2009.
[2]  F. Stetzer, “Specifying weights in spatial forecasting models: the results of some experiments,” Environment & Planning A, vol. 14, no. 5, pp. 571–584, 1982.
[3]  L. Anselin, “Under the hood issues in the specification and interpretation of spatial regression models,” Agricultural Economics, vol. 27, no. 3, pp. 247–267, 2002.
[4]  B. Fingleton, “Externalities, economic geography, and spatial econometrics: conceptual and modeling developments,” International Regional Science Review, vol. 26, no. 2, pp. 197–207, 2003.
[5]  G. Holloway and M. L. A. Lapar, “How big is your neighbourhood? Spatial implications of market participation among filipino smallholders,” Journal of Agricultural Economics, vol. 58, no. 1, pp. 37–60, 2007.
[6]  J. P. LeSage and O. Parent, “Bayesian model averaging for spatial econometric models,” Geographical Analysis, vol. 39, no. 3, pp. 241–267, 2007.
[7]  J. P. LeSage and M. M. Fischer, “Spatial growth regressions: model specification, estimation and interpretation,” Spatial Economic Analysis, vol. 3, no. 3, pp. 275–304, 2008.
[8]  J. Crespo-Cuaresma and M. Feldkircher, “Spatial filtering, model uncertainty and the speed of income convergence in Europe,” in Annual Meeting of the Austrian Economic Association, 2010, http://www.univie.ac.at/economics/noeg2010/papers/Crespo_Cuaresma_NOEG2010.pdf.
[9]  T. S. Eicher, A. Lenkoski, and A. E. Raftery, “Bayesian model averaging and endogeneity under model uncertainty: an application to development determinants,” UW Working Paper UWEC-2009-19, University of Washington, Department of Economics, 2009.
[10]  P. Kostov, “Model boosting for spatial weighting matrix selection in spatial lag models,” Environment and Planning B, vol. 37, no. 3, pp. 533–549, 2010.
[11]  H. H. Kelejian and I. R. Prucha, “A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances,” Journal of Real Estate Finance and Economics, vol. 17, no. 1, pp. 99–121, 1998.
[12]  J. Zietz, E. N. Zietz, and G. S. Sirmans, “Determinants of house prices: a quantile regression approach,” Journal of Real Estate Finance and Economics, vol. 37, no. 4, pp. 317–333, 2008.
[13]  T. H. Kim and C. Muller, “Two-stage quantile regression when the first stage is based on quantile regression,” Econometrics Journal, vol. 7, pp. 218–231, 2004.
[14]  V. Chernozhukov and C. Hansen, “Instrumental quantile regression inference for structural and treatment effect models,” Journal of Econometrics, vol. 132, no. 2, pp. 491–525, 2006.
[15]  V. Chernozhukov and C. Hansen, “Instrumental variable quantile regression: a robust inference approach,” Journal of Econometrics, vol. 142, no. 1, pp. 379–398, 2008.
[16]  V. Chernozhukov and H. Hong, “An MCMC approach to classical estimation,” Journal of Econometrics, vol. 115, no. 2, pp. 293–346, 2003.
[17]  O. Arias, K. F. Hallock, and W. Sosa-Escudero, “Individual heterogeneity in the returns to schooling: instrumental variables quantile regression using twins data,” Empirical Economics, vol. 26, no. 1, pp. 7–40, 2001.
[18]  J. García, P. J. Hernández, and A. López-Nicolás, “How wide is the gap? An investigation of gender wage differences using quantile regression,” Empirical Economics, vol. 26, no. 1, pp. 149–167, 2001.
[19]  N. Fenske, T. Kneib, and T. Hothorn, “Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression,” Technical Report No. 52, Department of Statistics, LMU München, 2009.
[20]  R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society B, vol. 58, pp. 267–288, 1996.
[21]  J. Fan and R. Li, “Variable selection via nonconcave penalized likelihood and its oracle properties,” Journal of the American Statistical Association, vol. 96, no. 456, pp. 1348–1360, 2001.
[22]  Y. Li and J. Zhu, “L1-norm quantile regression,” Journal of Computational and Graphical Statistics, vol. 17, no. 1, pp. 163–185, 2008.
[23]  Y. Wu and Y. Liu, “Variable selection in quantile regression,” Statistica Sinica, vol. 19, no. 2, pp. 801–817, 2009.
[24]  A. Belloni and V. Chernozhukov, “L1-penalized quantile regression in high-dimensional sparse models,” WP10/09, Centre For Microdata Methods and Practice, Institute for Fiscal Studies, 2009.
[25]  E. Greenshtein and Y. Ritov, “Persistence in high-dimensional linear predictor selection and the virtue of overparametrization,” Bernoulli, vol. 10, no. 6, pp. 971–988, 2004.
[26]  J. Fan and J. Lv, “Sure independence screening for ultrahigh dimensional feature space,” Journal of the Royal Statistical Society B, vol. 70, no. 5, pp. 849–911, 2008.
[27]  L. Wasserman and K. Roeder, “High-dimensional variable selection,” Annals of Statistics A, vol. 37, no. 5, pp. 2178–2201, 2009.
[28]  N. Meinshausen and P. Bühlmann, “Stability selection,” Journal of the Royal Statistical Society B, vol. 72, no. 4, pp. 417–473, 2010.
[29]  R. Koenker and G. Bassett, “Regression quantiles,” Econometrica, vol. 46, pp. 33–50, 1978.
[30]  H. Zou and M. Yuan, “Regularized simultaneous model selection in multiple quantiles regression,” Computational Statistics and Data Analysis, vol. 52, no. 12, pp. 5296–5304, 2008.
[31]  H. Zou and T. Hastie, “Regularization and variable selection via the elastic net,” Journal of the Royal Statistical Society B, vol. 67, no. 2, pp. 301–320, 2005.
[32]  H. Wang and C. Leng, “Unified LASSO estimation by least squares approximation,” Journal of the American Statistical Association, vol. 102, no. 479, pp. 1039–1048, 2007.
[33]  B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.
[34]  H. Wang, R. Li, and C. L. Tsai, “Regression coefficient and autoregressive order shrinkage and selection via the lasso,” Journal of the Royal Statistical Society B, vol. 69, no. 1, pp. 63–78, 2007.
[35]  W. K. Newey and J. L. Powell, “Efficient estimation of linear and type I censored regression models under conditional quantile restrictions,” Econometric Theory, vol. 6, pp. 295–317, 1990.
[36]  D. Harrison and D. L. Rubinfeld, “Hedonic Housing Prices and the Demand for Clean Air,” Journal of Environmental Economics and Management, vol. 5, pp. 81–102, 1978.
[37]  O.W. Gilley and R. K. Pace, “On the Harrison and Rubinfeld Data,” Journal of Environmental Economics and Management, vol. 3, pp. 403–405, 1996.
[38]  H. Wang, “Factor profiling for ultra high dimensional variable selection,” Working Paper, 2011, http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1613452.
[39]  H. Cho and P. Fryzlewicz, “High-dimensional variable selection via tilting,” 2010, High-dimensional variable selection, http://stats.lse.ac.uk/fryzlewicz/tilt/tilt.pdf.
[40]  R: Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2009, http://www.R-project.org.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133