This paper examines the impact of expiration of derivatives on spot volatility of Indian capital market. The review of the literature shows that the previous Indian studies have covered a period of only 4–6 years after the introduction of derivative trading in India in 2000. They are unanimous about volume effect but not about return and volatility effect. This paper uses regression techniques and one symmetric and three asymmetric GARCH models, namely, TGARCH, EGARCH, and PGARCH, to evaluate the impact. It uses daily data on popular index S&P CNX Nifty of National Stock Exchange of India, during a period of more than a decade from June 12, 2000 to January 10, 2012. Findings of the study show that spot returns, volume, and volatility are high on expiration day and they build up further on the day after expiry which shows that the Indian market is weakly efficient. The expiration effect is mainly due to concentration of volumes in near-month contracts and absence of physical settlement. 1. Introduction Derivatives were introduced on two major exchanges of India, namely, National Stock exchange (NSE) and Bombay Stock Exchange (BSE) in 2000. During this time Indian government took many decisions to bring major structural changes in the market. NSE acted as a catalytic agent in reforming the micro structure, market practices, and trading volumes of the Indian securities market. It is dominating the derivative segment with more than 99% of the market share in 2011-12. The exchanges manage their respective cash and derivative segments which have been well integrated with uniform trade practices and trade timings. Screen-based trading allows the arbitrageurs to use computer programs for identifying arbitrage conditions and ensures quick execution of orders. Index and stock-based derivatives are traded in monthly series, the expiration date for each series being the last Thursday of the expiry month, that is, Indian market experiences the quadruple witching day. At any point of time, three monthly series are traded side by side and are cash settled on the expiration or an early exercise. As derivative contracts call for cash settlement on the expiration day, the trading and manipulation activities of speculators and unwinding of cash positions by arbitrageurs in the cash markets sometimes cause distortion to price, volume, and volatility near the expiration day. If many arbitrageurs liquidate at the same time and in the same direction, price and volatility effects are possible. Speculators can also make deliberate attempts to manipulate prices. The severity of
References
[1]
B. S. Bodla and K. Jindal, “Equity derivatives in India: growth pattern and trading volume effects,” ICFAI Journal of Derivatives Markets, vol. 5, pp. 62–82, 2008.
[2]
S. S. Debasish, “Investigating expiration day effects in stock index futures in India,” Journal of Economics and Behavioral Studies, vol. 1, pp. 9–19, 2010.
[3]
A. G. Karolyi, “Stock market volatility around expiration days in Japan,” Journal of Derivatives, vol. 4, no. 2, pp. 23–43, 1996.
[4]
P. F. Pope and P. K. Yadav, “The impact of option expiration on underlying stocks: the UK evidence,” Journal of Business Finance & Accounting, vol. 19, pp. 329–344, 1992.
[5]
C. Schlag, “Expiration-day effects of stock index derivatives in Germany,” European Financial Management, vol. 2, pp. 69–95, 1996.
[6]
H. R. Stoll and R. E. Whaley, “Expiration-day effects of the all ordinaries share price index futures: empirical evidence and alternative settlement procedures,” Australian Journal of Management, vol. 22, no. 2, pp. 139–174, 1997.
[7]
N. Tripathy, “Expiration and week effect: empirical evidence from the Indian derivative market,” International Review of Business Research Papers, vol. 6, pp. 209–219, 2010.
[8]
V. Vipul, “Futures and options expiration-day effects: the Indian evidence,” The Journal of Futures Markets, vol. 25, no. 11, pp. 1045–1065, 2005.
[9]
H. R. Stoll and R. E. Whaley, Expiration Day Effects of Index Options and Futures, Monograph Series in Finance and Economics, Monograph 1986-3, New York University, 1986.
[10]
H. R. Stoll and R. E. Whaley, “Program trading and expiration-day effects,” Financial Analysts Journal, vol. 43, no. 2, pp. 16–18, 20–28, 1987.
[11]
H. R. Stoll and R. E. Whaley, “Program trading and individual stock returns: ingredients of the triple-witching brew,” The Journal of Business, vol. 63, no. 1, pp. S165–S192, 1990.
[12]
H. R. Stoll and R. E. Whaley, “Expiration-day effects: what has changed?” Financial Analysts Journal, vol. 47, no. 1, pp. 58–72, 1991.
[13]
Y.-F. Chow, H. H. M. Yung, and H. Zhang, “Expiration day effects: the case of Hong Kong,” The Journal of Futures Markets, vol. 23, no. 1, pp. 67–86, 2003.
[14]
D. Lien and L. Yang, “Availability and settlement of individual stock futures and options expiration-day effects: evidence from high-frequency data,” The Quarterly Review of Economics and Finance, vol. 45, no. 4-5, pp. 730–747, 2005.
[15]
H. M. Maniar, R. Bhatt, and D. M. Maniyar, ““Expiration hour effect of futures and options markets on stock market”a case study on NSE (National Stock Exchange of India),” International Review of Economics and Finance, vol. 18, no. 3, pp. 381–391, 2009.
[16]
T. W. Chamberlain, C. S. Cheung, and C. C. Y. Kwan, “Expiration-day effects of index futures and options: some Canadian evidence,” Financial Analysts Journal, vol. 45, no. 5, pp. 67–71, 1989.
[17]
M. Illueca and J. A. LaFuente, “New evidence on expiration-day effects using realized volatility: an intraday analysis for the Spanish stock exchange,” The Journal of Futures Markets, vol. 26, no. 9, pp. 923–938, 2006.
[18]
P. Corredor, P. Lechón, and R. Santamaría, “Option-expiration effects in small markets: the Spanish stock exchange,” The Journal of Futures Markets, vol. 21, no. 10, pp. 905–928, 2001.
[19]
D. Lien and L. I. Yang, “Options expiration effects and the role of individual share futures contracts,” The Journal of Futures Markets, vol. 23, no. 11, pp. 1107–1118, 2003.
[20]
T. Bollerslev, “Generalized autoregressive conditional heteroskedasticity,” Journal of Econometrics, vol. 31, no. 3, pp. 307–327, 1986.
[21]
F. Black, “Studies in stock price volatility changes,” in Proceedings of the Business Meeting of the Business and Economics Statistics Section, pp. 177–181, American Statistical Association, 1976.
[22]
K. R. French, G. W. Schwert, and R. F. Stambaugh, “Expected stock returns and volatility,” Journal of Financial Economics, vol. 19, no. 1, pp. 3–29, 1987.
[23]
D. B. Nelson, “Conditional Heteroskedasticity in asset returns: a new approach,” Econometrica, vol. 59, pp. 347–370, 1991.
[24]
G. Schwert, “Stock volatility and the crash of “87”,” Review of Financial Studies, vol. 3, pp. 77–102, 1990.
[25]
A. A. Christie, “The stochastic behavior of common stock variances. Value, leverage and interest rate effects,” Journal of Financial Economics, vol. 10, no. 4, pp. 407–432, 1982.
[26]
L. R. Glosten, R. Jagannathan, and D. E. Runkle, “On the relation between the expected value and the volatility of the nominal excess return on stocks,” Journal of Finance, vol. 48, no. 5, pp. 1779–1801, 1983.
[27]
S. Taylor, Modeling Financial Time Series, John Wiley & Sons, New York, NY, USA, 1986.
[28]
G. Schwert, “Why stock market volatility change over time?” Journal of Finance, vol. 44, pp. 1115–1153, 1989.
[29]
A. R. Admati and P. Pfleiderer, “A theory of intraday patterns: volume and price variability,” Review of Financial Studies, vol. 1, pp. 3–40, 1988.
[30]
E. F. Fama, “Multi-period consumption-investment decisions,” American Economic Review, vol. 60, pp. 163–174, 1970.