全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lead, Follow or Cooperate? Sequential versus Collusive Payoffs in Symmetric Duopoly Games

DOI: 10.1155/2013/645481

Full-Text   Cite this paper   Add to My Lib

Abstract:

In many strategic settings comparing the payoffs obtained by players under full cooperation to those obtainable at a sequential (Stackelberg) equilibrium can be crucial to determine the outcome of the game. This happens, for instance, in repeated games in which players can break cooperation by acting sequentially, as well as in merger games in which firms are allowed to sequence their actions. Despite the relevance of these and other applications, no full-fledged comparisons between collusive and sequential payoffs have been performed so far. In this paper we show that even in symmetric duopoly games the ranking of cooperative and sequential payoffs can be extremely variable, particularly when the usual linear demand assumption is relaxed. Not surprisingly, the degree of strategic complementarity and substitutability of players’ actions (and, hence, the slope of their best replies) appears decisive to determine the ranking of collusive and sequential payoffs. Some applications to endogenous timing are discussed. 1. Introduction Standard game-theoretic settings dealing with the emergence of cooperation usually weight the stream of players’ payoffs colluding a finite or infinite number of periods to those obtained by defecting one period and then playing simultaneously à la Nash (noncooperatively) afterward. The possibility that players defect from the collusive outcome as leaders or followers in every stage game is usually not considered. An exception to this approach is contained, for instance, in Mouraviev and Rey [1], who study the role of price (or quantity) leadership in facilitating firm collusion in an infinitely repeated setting. They show that, under price competition and, to a much lesser extent, under quantity competition, the possibility that players sequence their actions in every stage may help to sustain collusion. This happens because the presence of a deviating leader makes it easy for the follower to punish such defection. In general, the focus on the link between timing and collusion is not entirely new within the economic literature. For instance, in some classical contributions on cartels and mergers under oligopoly, colluding firms are assumed to act as Stackelberg leaders [2–6]. Moreover, a few recent papers on mergers and R&D agreements consider different timing structures, where groups of firms can either act as leaders or followers (e.g., [7–10]). In these and other potentially interesting economic applications, it is crucial to compare the payoff under collusion to those under noncooperative sequential play to determine the

References

[1]  I. Mouraviev and P. Rey, “Collusion and leadership,” International Journal of Industrial Organization, vol. 29, no. 6, pp. 705–717, 2011.
[2]  C. d'Aspremont, A. Jaquemin, J. Gabszewicz, and J. Weymark, “On the stability of dominant cartels,” Canadian Journal of Economics, vol. 14, pp. 17–25, 1982.
[3]  C. d'Aspremont and J. J. Gabszewicz, “On the stability of collusion,” in New Developments in the Analysis of Market Structure, J. Stiglitz and G. F. Mathewson, Eds., MIT Press, Boston, Mass, USA, 1986.
[4]  M. Donsimoni, N. Economides, and H. Polemarchakis, “Stable cartels,” International Economic Review, vol. 27, pp. 317–327, 1986.
[5]  A. Daughety, “Beneficial concentration,” American Economic Review, vol. 80, no. 5, pp. 1231–1237, 1990.
[6]  D. Levine, “Horizontal mergers: the 50-percent benchmark,” American Economic Review, vol. 80, no. 5, pp. 1238–1245, 1990.
[7]  S. Huck, K. A. Konrad, and W. Müller, “Big fish eat small fish: on merger in Stackelberg markets,” Economics Letters, vol. 73, no. 2, pp. 213–217, 2001.
[8]  J. S. Heywood and M. McGinty, “Leading and merging: convex costs, Stackelberg, and the merger paradox,” Southern Economic Journal, vol. 74, no. 3, pp. 879–893, 2008.
[9]  M. Escrihuela-Villar and R. Faulí-Oller, “Mergers in asymmetric Stackelberg markets,” Spanish Economic Review, vol. 10, no. 4, pp. 279–288, 2008.
[10]  M. Marini, M. L. Petit, and R. Sestini, “Strategic timing in R&D agreements,” Economics of Innovation and New Technology, 2013.
[11]  E. van Damme and S. Hurkens, “Endogenous Stackelberg leadership,” Games and Economic Behavior, vol. 28, no. 1, pp. 105–129, 1999.
[12]  E. van Damme and S. Hurkens, “Endogenous price leadership,” Games and Economic Behavior, vol. 47, no. 2, pp. 404–420, 2004.
[13]  B. von Stengel, “Follower payoffs in symmetric duopoly games,” Games and Economic Behavior, vol. 69, no. 2, pp. 512–516, 2010.
[14]  E. Gal-Or, “First mover and second mover advantages,” International Economic Review, vol. 26, pp. 649–653, 1985.
[15]  R. Amir, I. Grilo, and J. Jin, “Demand-induced endogenous price leadership,” International Game Theory Review, vol. 1, pp. 219–240, 1999.
[16]  S. Dowrick, “von Stackelberg and Cournot duopoly: choosing roles,” The RAND Journal of Economics, vol. 17, no. 2, pp. 251–260, 1986.
[17]  R. Amir, “Endogenous timing in two-player games: a counterexample,” Games and Economic Behavior, vol. 9, no. 2, pp. 234–237, 1995.
[18]  R. Amir and I. Grilo, “Stackelberg versus Cournot equilibrium,” Games and Economic Behavior, vol. 26, no. 1, pp. 1–21, 1999.
[19]  S. Currarini and M. Marini, “A sequential approach to the characteristic function and the core in games with externalities,” in Advances in Economic Design, M. Sertel and A. Kara, Eds., Springer, Berlin, Germany, 2003.
[20]  S. Currarini and M. Marini, “A conjectural cooperative equilibrium in strategic form games,” in Game Practise and the Environment, C. Carraro and V. Fragnelli, Eds., Kluwer Academic Press, Norwell, Mass, USA, 2004.
[21]  B. von Stengel and S. Zamir, “Leadership games with convex strategy sets,” Games and Economic Behavior, vol. 69, no. 2, pp. 446–457, 2010.
[22]  D. Levine, “Stackelberg, Cournot and collusive monopoly: performance and welfare comparison,” Economic Inquiry, vol. 26, pp. 317–330, 1988.
[23]  C. Figuières, M. Tidball, and A. Jean-Marie, “On the effects of conjectures in a symmetric strategic setting,” Research in Economics, vol. 58, no. 1, pp. 75–102, 2004.
[24]  D. M. Topkis, Supermodularity and Complementarity, Princeton University Press, Princeton, NJ, USA, 1998.
[25]  S. W. Salant and G. Shaffer, “Optimal asymmetric strategies in research joint ventures,” International Journal of Industrial Organization, vol. 16, no. 2, pp. 195–208, 1998.
[26]  D. Leahy and P. J. Neary, “Symmetric research joint ventures: cooperative substitutes and complements,” International Journal of Industrial Organization, vol. 23, pp. 5381–6397, 2005.
[27]  J. H. Hamilton and S. M. Slutsky, “Endogenous timing in duopoly games: Stackelberg or Cournot equilibria,” Games and Economic Behavior, vol. 2, no. 1, pp. 29–46, 1990.
[28]  M. Amir, R. Amir, and J. Jin, “Sequencing R&D decisions in a two-period duopoly with spillovers,” Economic Theory, vol. 15, no. 2, pp. 297–317, 2000.
[29]  D. Ray and R. Vohra, “Equilibrium binding agreements,” Journal of Economic Theory, vol. 73, no. 1, pp. 30–78, 1997.
[30]  F. Bloch, “Coalition formation in games with spillovers,” in The Endogenous Formation of Economic Coalitions, C. Carraro, Ed., Fondazione Eni Enrico Mattei Series on Economics and the Environment, Elgar, Cheltenham, UK, 2003.
[31]  S. S. Yi, “The endogenous formation of economic coalitions: the partition function approach,” in The Endogenous Formation of Economic Coalitions, C. Carraro, Ed., Fondazione Eni Enrico Mattei Series on Economics and the Environment, pp. 80–127, Elgar, Cheltenham, UK, 2003.
[32]  D. Ray, A Game-Theoretic Perspective on Coalition Formation, Oxford University Press, Oxford, UK, 2007.
[33]  M. A. Marini, “Games of coalition and network formation: a survey,” in Networks, Dynamics and Topology, A. Naizmada, S. Stefani, and A. Torriero, Eds., Springer, London, UK, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133