Conventional fossil fuels dominate the marketplace, and their prices are a direct competitor for drop-in biofuels. This paper examines the impact of fuel selling price uncertainty on investment risk in a fast pyrolysis derived biofuel production facility. Production cost specifications are gathered from previous research. Monte Carlo analysis is employed with uncertainty in fuel selling price, biomass cost, bio-oil yield, and hydrogen price parameters. Experiments reveal that fuel price has a large impact on investment risk. A reverse auction would shift risk from the private sector to the public sector and is shown to be more effective at encouraging private investment than capital subsidies for the same expected public cost. 1. Introduction This study is a technoeconomic analysis of the fast pyrolysis process. The main objective is to evaluate the effect of fuel price and technical uncertainty on the economic feasibility of biofuels created by catalytic fast pyrolysis using a circulating fluidized bed reactor. Previous studies have focused on creating reliable estimates of the initial capital and operating costs of a biorefinery. This study analyzes the effect of uncertainty in capital cost, hydrogen price, bio-oil yield, feedstock cost, and final product selling price on the appeal of project investment to a private investor. It directly evaluates the effect of two policy instruments—a reverse auction, which effectively fixes the price of the biofuel over the life of the project, and a capital subsidy. This research provides policy makers with information on how these policies could affect biofuel investment decisions. Supply of advanced biofuels is expected to be a growing part of future liquid supply. US government investment in renewable power and fuels was $36 billion in 2012 [1]. Total US investment in the clean energy sector was $268 billion in 2012, a 500% increase since 2004 [2]. Imported petroleum products as a percentage of US petroleum consumption have decreased from 60% to 40% between 2005 and 2012 [3]. Supply of advanced biofuels is expected to be a growing part of future liquid supply [4, 5]. Research and development of economically attractive alternative fuel sources are ongoing in many nations around the world. Catalytic fast pyrolysis is a process used to convert biomass to a bio-oil. This process is chosen for this study because of the relatively low cost per gallon [6–9]. Pyrolysis oil can be refined to diesel, gasoline, or jet fuel. Detailed descriptions of the fast pyrolysis process are available in the previous literature
References
[1]
A. McCrone, E. Usher, O. V. Sonntag-'Brien, U. Moslener, and C. Grüning, “Global Trends in Renewable Energy Investment,” United Nations Environment Programme, 2013, http://www.unep.org/pdf/GTR-UNEP-FS-BNEF2.pdf.
[2]
Energy Efficiency and Renewable Energy, FY 2014 Budget Rollout. U.S. Department of Energy, 2013, http://www1.eere.energy.gov/office_eere/pdfs/budget/fy2014_eere_congressional_budget_request.pdf.
[3]
Bioenergy Technologies Office, “Replacing the Whole Barrel To Reduce U.S. Dependence on Oil,” U.S. Department of Energy, 2013, https://www1.eere.energy.gov/bioenergy/pdfs/replacing_barrel_overview.pdf.
[4]
U.S. Energy Information Administration, Annual Energy Outlook, 2013, http://www.eia.gov/aeo.
[5]
Bioenergy Technologies Office, “US Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry,” U.S. Department of Energy, http://www1.eere.energy.gov/bioenergy/pdfs/billion_ton_update.pdf.
[6]
R. Tristan Brown, R. Thilakaratne, R. C. Brown, and G. Hu, “Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing,” Fuel, vol. 106, pp. 463–469, 2013.
[7]
S. B. Jones, C. Valkenburg, C. W. Walton, et al., “Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: a design case,” Pacific Northwest National Laboratory, http://www.pnl.gov/main/publications/external/technical_reports/PNNL-18284rev1.pdf.
[8]
R. P. Anex, A. Aden, F. K. Kazi et al., “Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways,” Fuel, vol. 89, no. 1, supplement, pp. S29–S35, 2010.
[9]
S. B. Jones and J. L. Male, “Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: 2011 State of Technology and Projections to 2017,” Pacific Northwest National Laboratory, http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-22133.pdf.
[10]
A. V. Bridgwater, “Review of fast pyrolysis of biomass and product upgrading,” Biomass and Bioenergy, vol. 38, pp. 68–94, 2012.
[11]
T. Bridgwater, “Biomass for energy,” Journal of the Science of Food and Agriculture, vol. 86, no. 12, pp. 1755–1768, 2006.
[12]
S. Czernik and A. V. Bridgwater, “Overview of applications of biomass fast pyrolysis oil,” Energy and Fuels, vol. 18, no. 2, pp. 590–598, 2004.
[13]
D. Mohan, C. U. Pittman Jr., and P. H. Steele, “Pyrolysis of wood/biomass for bio-oil: a critical review,” Energy and Fuels, vol. 20, no. 3, pp. 848–889, 2006.
[14]
M. M. Wright, D. E. Daugaard, J. A. Satrio, and R. C. Brown, “Techno-economic analysis of biomass fast pyrolysis to transportation fuels,” Fuel, vol. 89, no. 1, supplement, pp. S2–S10, 2010.
[15]
R. Tristan Brown and R. C. Brown, “Techno-economics of advanced biofuels pathways,” RSC Advances, vol. 3, no. 17, pp. 5758–5764, 2013.
[16]
T. Brown and G. Hu, “Technoeconomic sensitivity of biobased hydrocarbon production via fast pyrolysis to government incentive programs,” Journal of Energy Engineering, vol. 138, no. 2, pp. 54–62, 2011.
[17]
D. Meier, B. van de Beld, A. V. Bridgwaterorg, et al., “State-of-the-art of fast pyrolysis in IEA bioenergy member countries,” Renewable and Sustainable Energy Reviews, vol. 20, pp. 619–641, 2013.
[18]
C. E. Ridley, C. M. Clark, S. D. Leduc et al., “Biofuels: network analysis of the literature reveals key environmental and economic unknowns,” Environmental Science and Technology, vol. 46, no. 3, pp. 1309–1315, 2012.
[19]
W. E. Tyner, “Biofuels and agriculture: a past perspective and uncertain future,” International Journal of Sustainable Development & World Ecology, vol. 19, no. 5, pp. 389–394, 2012.
[20]
D. Rajagopal and D. Zilberman, “Review of Environmental, Economic and Policy Aspects of Biofuels,” Working Paper 4341, World Bank Policy Research, 2007.
[21]
National Research Council, Renewable Fuel Standard: Potential Economic and Environmental Effects of US Biofuel Policy, National Academies Press, 2011.
[22]
T. L. Richard, “Challenges in scaling up biofuels infrastructure,” Science, vol. 329, no. 5993, pp. 793–796, 2010.
[23]
L. J. Snowden-Swan and J. L. Male, “Summary of Fast Pyrolysis and Upgrading GHG Analyses,” Pacific Northwest National Laboratory, 2012, http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-22175.pdf.
[24]
T. Searchinger, R. Heimlich, R. A. Houghton et al., “Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change,” Science, vol. 319, no. 5867, pp. 1238–1240, 2008.
[25]
W. E. Tyner, F. Taheripour, and D. Perkis, “Comparison of fixed versus variable biofuels incentives,” Energy Policy, vol. 38, no. 10, pp. 5530–5540, 2010.
[26]
W. Tyner, “Description of 2011 Biofuels Policy Alternatives,” Policy Briefs 1, Global Policy Research Institute (GPRI), 2011.
[27]
W. E. Tyner, “The US ethanol and biofuels boom: its origins, current status, and future prospects,” BioScience, vol. 58, no. 7, pp. 646–653, 2008.
D. Humbird, R. Davis, L. Tao, et al., “Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover,” National Renewable Energy Laboratory, 2011, http://www.afdc.energy.gov/pdfs/47764.pdf.
[30]
National Research Council, Transitions to Alternative Transportation Technologies: A Focus on Hydrogen, National Academies Press, 2008.
[31]
J. R. Bartels, M. B. Pate, and N. K. Olson, “An economic survey of hydrogen production from conventional and alternative energy sources,” International Journal of Hydrogen Energy, vol. 35, no. 16, pp. 8371–8384, 2010.
[32]
U.S. Government Accountability Office, “Corporate Income Tax: Effective Tax Rates Can Differ Significantly from the Statutory Rate,” 2013, http://www.gao.gov/products/gao-13-520.
[33]
Bureau of Labor Statistics, “Producer Price Index-Commodities,” U.S. Department of Labor, 2013, http://www.bls.gov/ppi.
[34]
S. Irwin and D. Good, “Farmdocdaily: What Combination of Corn and RINs Prices Makes E85 Competitive?” University of Illinois, http://farmdocdaily.illinois.edu/2013/06/combination-corn-rins-prices-e85.html.