This study examines the Granger causality between Taiwan's aggregate and disaggregate energy consumption and trade variables, including total imports (IM), total exports (EX), total energy consumption (ENERGY), oil and petroleum products consumption (OIL), coal and coal products consumption (COAL), natural gas consumption (GAS), export value of the industrial sector (EX_I), export value of heavy-chemical industrial products (EX_HI), and export value of non-heavy-chemical industrial products (EX_NHI) with monthly data during 1998–2009. Via applying Hsiao's version of the Granger causality method, the results find causality running from ENERGY to IM, EX, EX_I, and EX_HI. The impulse-response simulations show that the above relations have positive responses at the initial period. OIL Granger causes all trade variables. The impulse directions to IM and EX_NHI are negative, whereas others are positive. On the other hand, COAL responds to impulses in all trade variables. The impulse-response simulations show that these relations have positive responses at the initial period except for causality running from EX_HI and EX_NHI to COAL. GAS positively responds to impulses in EX, EX_I, and EX_HI at the initial period. The bidirectional Granger causality between pairs of variables (such as GAS and EX_NHI as well as GAS and EX_HI) is found. 1. Introduction The 1973 energy crisis prompted countries all over the world to see the importance of energy to national security as well as economic development. Moreover, greenhouse gases produced by energy consumption have had drastic impacts on global climate change, attracting attention and efforts under the UN Framework Convention on Climate Change. Since domestic energy sources in Taiwan are scarce, Taiwan’s dependence on imported energy was rated up at 99.34% in 2008 [1]. The cost of imported energy accounts for 11.31% of Taiwan’s GDP [2]. Total energy consumption has grown greatly over the past two decades, going from 48.04 million kiloliters of oil equivalent (KLOE) in 1989 to 113.09 million kiloliters in 2009, which is an average annual growth of 4.41% (Table 1) [3]. In the face of a constant rise in energy prices, the heavy cost of imported energy impacts not only household expenditures, but also the country’s overall economic growth [4, 5]. As international energy prices skyrocket, they raise the production costs for energy-consuming industries and hence directly reduce firms’ profit margins and production. Table 1: Total domestic energy consumption quantity and growth rate. Taiwan’s primary imported energy resources
References
[1]
Bureau of Energy, Ministry of EconomicAffairs, Taipei, Taiwan, http://web3.moeaboe.gov.tw/ECW/english/home/English.aspx.
[2]
Bureau of Energy, Ministry of Economic Affairs, Energy Statistics Handbook, Bureau of Energy, Ministry of Economic Affairs, Taipei, Taiwan, 2007.
[3]
Bureau of Energy, Ministry of Economic Affairs, 2009 Energy Statistics Handbook, Bureau of Energy, Ministry of Economic Affairs, Taipei, Taiwan, 2009, http://www.moeaboe.gov.tw/Download/opengovinfo/plan/all/files/EnergyStatisticalDataBook.pdf.
[4]
T. Chien and J. L. Hu, “Renewable energy and macroeconomic efficiency of OECD and non-OECD economies,” Energy Policy, vol. 35, no. 7, pp. 3606–3615, 2007.
[5]
J. L. Hu and C. H. Lin, “Disaggregated energy consumption and GDP in Taiwan: a threshold co-integration analysis,” Energy Economics, vol. 30, no. 5, pp. 2342–2358, 2008.
[6]
E. E. Ghartey, “Causal relationship between exports and economic growth: some empirical evidence in Taiwan, Japan and the US,” Applied Economics, vol. 25, no. 9, pp. 1145–1152, 1993.
[7]
A. C. C. Kwan, J. A. Cotsomitis, and B. Kwok, “Exports, economic growth and exogeneity: Taiwan 1953–88,” Applied Economics, vol. 28, no. 4, pp. 467–471, 1996.
[8]
N. S. Shirazi and T. A. A. Manap, “Export-led growth hypothesis: further econometric evidence from South Asia,” Developing Economies, vol. 43, no. 4, pp. 472–488, 2005.
[9]
G. Machado, R. Schaeffer, and E. Worrell, “Energy and carbon embodied in the international trade of Brazil: an input-output approach,” Ecological Economics, vol. 39, no. 3, pp. 409–424, 2001.
[10]
J. Kraft and A. Kraft, “On the relationship between energy and GNP,” Journal of Energy and Development, vol. 3, no. 2, pp. 401–403, 1978.
[11]
J. B. Ang, “CO2 emissions, energy consumption, and output in France,” Energy Policy, vol. 35, no. 10, pp. 4772–4778, 2007.
[12]
N. Bowden and J. E. Payne, “The causal relationship between U.S. energy consumption and real output: a disaggregated analysis,” Journal of Policy Modeling, vol. 31, no. 2, pp. 180–188, 2009.
[13]
B. S. Cheng and T. W. Lai, “An investigation of co-integration and causality between energy consumption and economic activity in Taiwan,” Energy Economics, vol. 19, no. 4, pp. 435–444, 1997.
[14]
X. P. Zhang and X. M. Cheng, “Energy consumption, carbon emissions, and economic growth in China,” Ecological Economics, vol. 68, no. 10, pp. 2706–2712, 2009.
[15]
C. Hsiao, “Autoregressive modelling and money-income causality detection,” Journal of Monetary Economics, vol. 7, no. 1, pp. 85–106, 1981.
[16]
J. B. Ang, “Economic development, pollutant emissions and energy consumption in Malaysia,” Journal of Policy Modeling, vol. 30, no. 2, pp. 271–278, 2008.
[17]
K. Fatai, L. Oxley, and F. Scrimgeour, “Energy consumption and employment in New Zealand: searching for causality,” in Proceedings of the New Zealand Association of Economists Conference (NZAE'02), Wellington, New Zealand, 2002.
[18]
J. E. Payne, “On the dynamics of energy consumption and output in the US,” Applied Energy, vol. 86, no. 4, pp. 575–577, 2009.
[19]
G. Hondroyiannis, S. Lolos, and E. Papapetrou, “Energy consumption and economic growth: assessing the evidence from Greece,” Energy Economics, vol. 24, no. 4, pp. 319–336, 2002.
[20]
G. Erdal, H. Erdal, and K. Esengün, “The causality between energy consumption and economic growth in Turkey,” Energy Policy, vol. 36, no. 10, pp. 3838–3842, 2008.
[21]
M. Belloumi, “Energy consumption and GDP in Tunisia: cointegration and causality analysis,” Energy Policy, vol. 37, no. 7, pp. 2745–2753, 2009.
[22]
I. Mongelli, G. Tassielli, and B. Notarnicola, “Global warming agreements, international trade and energy/carbon embodiments: an input-output approach to the Italian case,” Energy Policy, vol. 34, no. 1, pp. 88–100, 2006.
[23]
S. H. Yoo and J. S. Lee, “Electricity consumption and economic growth: a cross-country analysis,” Energy Policy, vol. 38, no. 1, pp. 622–625, 2010.
[24]
H. T. Pao, “Forecast of electricity consumption and economic growth in Taiwan by state space modeling,” Energy, vol. 34, no. 11, pp. 1779–1791, 2009.
[25]
M. Balat, “Electricity consumption and economic growth in Turkey: a case study,” Energy Sources, Part B, vol. 4, no. 2, pp. 155–165, 2009.
[26]
S. Abosedra, A. Dah, and S. Ghosh, “Electricity consumption and economic growth, the case of Lebanon,” Applied Energy, vol. 86, no. 4, pp. 429–432, 2009.
[27]
N. Apergis and J. E. Payne, “A panel study of nuclear energy consumption and economic growth,” Energy Economics, vol. 32, no. 3, pp. 545–549, 2010.
[28]
Y. Wolde-Rufael and K. Menyah, “Nuclear energy consumption and economic growth in nine developed countries,” Energy Economics, vol. 32, no. 3, pp. 550–556, 2010.
[29]
G. Zou and K. W. Chau, “Short- and long-run effects between oil consumption and economic growth in China,” Energy Policy, vol. 34, no. 18, pp. 3644–3655, 2006.
[30]
S. H. Yoo, “Causal relationship between coal consumption and economic growth in Korea,” Applied Energy, vol. 83, no. 11, pp. 1181–1189, 2006.
[31]
S. H. Yoo, “Oil consumption and economic growth: evidence from Korea,” Energy Sources, Part B, vol. 1, no. 3, pp. 235–243, 2006.
[32]
H. Y. Yang, “Coal consumption and economic growth in Taiwan,” Energy Sources, vol. 22, no. 2, pp. 109–115, 2000.
[33]
C. A. Sims, “Macroeconomics and reality,” Econometrica, vol. 48, no. 1, pp. 1–47, 1980.
[34]
Bureau of Energy, “Energy Statistics Monthly Report,” 2009, http://www.moeaboe.gov.tw/opengovinfo/Plan/all/energy_mthreport/main.