全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Role of Optical Radiations in Skin Cancer

DOI: 10.1155/2013/842359

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. Electromagnetic radiation with wavelength in the range 100?nm to 1?mm is known as optical radiation and includes ultraviolet radiation, the visible spectrum, and infrared radiation. The deleterious short- and long-term biological effects of ultraviolet radiation, including melanoma and other skin cancers, are well recognized. Infrared radiation may also have damaging biological effects. Methods. The objective of this review was to assess the literature over the last 15 years and to summarize correlations between exposure to optical radiation and the risk of melanoma and other cancers. Results. There is a clear correlation between exposure to UV radiation and the development of skin cancer. Most importantly, a strong association between artificial UV radiation exposure, for example, tanning devices, and the risk of melanoma and squamous cell carcinoma has been clearly demonstrated. There is no clear evidence that exposure to IR and laser radiation may increase the risk of skin cancer, although negative health effects have been observed. Conclusions. Preventative strategies that involve provision of public information highlighting the risks associated with exposure to sunlight remain important. In addition, precautionary measures that discourage exposure to tanning appliances are required, as is legislation to prevent their use during childhood. 1. Introduction Electromagnetic radiation with wavelength (λ) in the range 100?nm to 1?mm is known as optical radiation and includes ultraviolet radiation (UV; 100–400?nm), through the visible spectrum (380–780?nm) to infrared radiation (IR; 9780?nm–1?mm) (Figure 1) [1]. UV radiation is subdivided into three regions: UVC (100–280?nm), UVB (280–315?nm), and UVA (315–400), with minimal superimposition over the visible band in the range of 380–400?nm. IR radiation is also further divided into IRA (780–1400?nm), IRB (1400–3000?nm), and IRC (3000?nm–1?mm). These spectral bands, as defined by the International Commission on Illumination (CIE) in 1987 [2], represent the starting point for this consideration of the biologic effects of optical radiation. Figure 1: Wavelenghts of the main optical radiations. 1.1. Ultraviolet Radiation Our planet is subjected to a solar radiation of about 1350?W/m2, although in reality only around 900?W/m2 reaches the Earth’s surface because of the reflective effect of the stratosphere. Of this amount, the UV component constitutes a limited fraction (around 5%), since sunlight also consists of visible and infrared bands. The maximum UV radiation measured at ground level is 70?W/m2

References

[1]  Sicurezza and Energia Multiservice, “Radiazioni Ottiche,” http://www.sicurezzaenergia.com/Sicurezza-sul-lavoro/Radiazioni-ottiche.php.
[2]  “International Commission on Illumination,” http://www.cie.co.at.
[3]  World Health Organization, “Ultraviolet radiation and health,” http://www.who.int/uv/uv_and_health/en/index.html.
[4]  World Health Organization, “Global solar UV index,” http://www.who.int/mediacentre/factsheets/fs305/en/index.html.
[5]  N. S. Agar, G. M. Halliday, R. S. C. Barnetson, H. N. Ananthaswamy, M. Wheeler, and A. M. Jones, “The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: a role for UVA in human skin carcinogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 14, pp. 4954–4959, 2004.
[6]  C. Robert, B. Muel, A. Benoit, L. Dubertret, A. Sarasin, and A. Stary, “Cell survival and shuttle vector mutagenesis induced by ultraviolet A and ultraviolet B radiation in a human cell line,” Journal of Investigative Dermatology, vol. 106, no. 4, pp. 721–728, 1996.
[7]  S. Pavel, N. P. M. Smit, H. Van Der Meulen et al., “Homozygous germline mutation of CDKN2A/p16 and glucose-6-phosphate dehydrogenase deficiency in a multiple melanoma case,” Melanoma Research, vol. 13, no. 2, pp. 171–178, 2003.
[8]  G. P. Pfeifer, Y. H. You, and A. Besaratinia, “Mutations induced by ultraviolet light,” Mutation Research, vol. 571, no. 1-2, pp. 19–31, 2005.
[9]  G. M. Halliday, “Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis,” Mutation Research, vol. 571, no. 1-2, pp. 107–120, 2005.
[10]  G. M. Halliday, N. S. Agar, R. S. C. Barnetson, H. N. Ananthaswamy, and A. M. Jones, “UV-A fingerprint mutations in human skin cancer,” Photochemistry and Photobiology, vol. 81, no. 1, pp. 3–8, 2005.
[11]  A. J. Ridley, J. R. Whiteside, T. J. McMillan, and S. L. Allinson, “Cellular and sub-cellular responses to UVA in relation to carcinogenesis,” International Journal of Radiation Biology, vol. 85, no. 3, pp. 177–185, 2009.
[12]  H. R. Griffiths, P. Mistry, K. E. Herbert, and J. Lunec, “Molecular and cellular effects of ultraviolet light-induced genotoxicity,” Critical Reviews in Clinical Laboratory Sciences, vol. 35, no. 3, pp. 189–237, 1998.
[13]  T. M. Rünger, “C→T transition mutations are not solely UVB-signature mutations, because they are also generated by UVA,” Journal of Investigative Dermatology, vol. 128, no. 9, pp. 2138–2140, 2008.
[14]  E. A. Drobetsky, J. Turcotte, and A. Chateauneuf, “A role for ultraviolet A in solar mutagenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 6, pp. 2350–2354, 1995.
[15]  R. Nishigaki, H. Mitani, N. Tsuchida, and A. Shima, “Effect of cyclobutane pyrimidine dimers on apoptosis induced by different wavelengths of UV,” Photochemistry and Photobiology, vol. 70, no. 2, pp. 228–235, 1999.
[16]  H. Zhang and I. Rosdahl, “Ultraviolet A and B differently induce intracellular protein expression in human skin melanocytes: a speculation of separate pathways in initiation of melanoma,” Carcinogenesis, vol. 24, no. 12, pp. 1929–1934, 2003.
[17]  A. Woollons, P. H. Clingen, M. L. Price, C. F. Arlett, and M. H. L. Green, “Induction of mutagenic DNA damage in human fibroblasts after exposure to artificial tanning lamps,” British Journal of Dermatology, vol. 137, no. 5, pp. 687–692, 1997.
[18]  Y. Wang, B. Rosenstein, S. Goldwyn, X. Zhang, M. Lebwohl, and H. Wei, “Differential regulation of P53 and Bcl-2 expression by ultraviolet A and B,” Journal of Investigative Dermatology, vol. 111, no. 3, pp. 380–384, 1998.
[19]  S. E. Whitmore, W. L. Morison, C. S. Potten, and C. Chadwick, “Tanning salon exposure and molecular alterations,” Journal of the American Academy of Dermatology, vol. 44, no. 5, pp. 775–780, 2001.
[20]  ?. E. Persson, D. W. Edstr?m, H. B?ckvall et al., “The mutagenic effect of ultraviolet-A1 on human skin demonstrated by sequencing the p53 gene in single keratinocytes,” Photodermatology Photoimmunology and Photomedicine, vol. 18, no. 6, pp. 287–293, 2002.
[21]  M. ?itum, M. Buljan, V. Bulat, Z. Bolanèa, and D. Simic, “The role of UV radiation in the development of Basal cell carcinoma,” Collegium Antropologicum, vol. 32, no. SUPPL. 2, pp. 167–170, 2008.
[22]  M. R. Gailani, D. J. Leffell, A. Ziegler, E. G. Gross, D. E. Brash, and A. E. Bale, “Relationship between sunlight exposure and a key genetic alteration in basal cell carcinoma,” Journal of the National Cancer Institute, vol. 88, no. 6, pp. 349–354, 1996.
[23]  C. L. Benjamin, V. O. Melnikova, and H. N. Ananthaswamy, “P53 protein and pathogenesis of melanoma and nonmelanoma skin cancer,” Advances in Experimental Medicine and Biology, vol. 624, pp. 265–282, 2008.
[24]  A. Pacifico and G. Leone, “Role of p53 and CDKN2A inactivation in human squamous cell carcinomas,” Journal of Biomedicine and Biotechnology, vol. 2007, Article ID 43418, 5 pages, 2007.
[25]  T. M. Rünger, “How different wavelengths of the ultraviolet spectrum contribute to skin carcinogenesis: the role of cellular damage responses,” Journal of Investigative Dermatology, vol. 127, no. 9, pp. 2103–2105, 2007.
[26]  J. Moan, A. C. Porojnicu, and A. Dahlback, “Ultraviolet radiation and malignant melanoma,” Advances in Experimental Medicine and Biology, vol. 624, pp. 104–116, 2008.
[27]  D. C. Bennett, “Ultraviolet wavebands and melanoma initiation,” Pigment Cell and Melanoma Research, vol. 21, no. 5, pp. 520–524, 2008.
[28]  L. Marrot and J. R. Meunier, “Skin DNA photodamage and its biological consequences,” Journal of the American Academy of Dermatology, vol. 58, no. 5, pp. S139–S148, 2008.
[29]  T. M. Rünger and U. P. Kappes, “Mechanisms of mutation formation with long-wave ultraviolet light (UVA),” Photodermatology Photoimmunology and Photomedicine, vol. 24, no. 1, pp. 2–10, 2008.
[30]  International Commission on Non-Ionizing Radiation Protection, “Guidelines on limits of exposure to laser radiation of wavelengths between 180?nm and 1,000?nm,” Health Physics, vol. 71, no. 5, pp. 804–814, 1996.
[31]  L. H. Klingman and A. M. Klingman, “Reflection on heat,” British Journal of Dermatology, vol. 110, no. 3, pp. 369–375, 1984.
[32]  J. S. Dover, T. J. Philips, and K. A. Arndt, “Cutaneous effects and therapeutic uses of heat with emphasis on infrared radiation,” Journal of the American Academy of Dermatology, vol. 20, no. 2 I, pp. 278–286, 1989.
[33]  E. White, C. S. Kirkpatrick, and J. A. H. Lee, “Case-control study of malignant melanoma in Washington State. I. Constitutional factors and sun exposure,” The American Journal of Epidemiology, vol. 139, no. 9, pp. 857–868, 1994.
[34]  J. Mark Elwood and J. Jopson, “Melanoma and sun exposure: an overview of published studies,” International Journal of Cancer, vol. 73, no. 2, pp. 198–203, 1997.
[35]  P. Autier and J.-F. Doré, “Influence of sun exposures during childhood and during adulthood on melanoma risk,” International Journal of Cancer, vol. 77, no. 4, pp. 533–537, 1998.
[36]  S. D. Walter, W. D. King, and L. D. Marrett, “Association of cutaneous malignant melanoma with intermittent exposure to ultraviolet radiation: results of a case-control study in Ontario, Canada,” International Journal of Epidemiology, vol. 28, no. 3, pp. 418–427, 1999.
[37]  P. Kaskel, S. Sander, M. Kron, P. Kind, R. U. Peter, and G. Kr?hn, “Outdoor activities in childhood: a protective factor for cutaneous melanoma? Results of a case-control study in 271 matched pairs,” British Journal of Dermatology, vol. 145, no. 4, pp. 602–609, 2001.
[38]  D. C. Whiteman, M. Stickley, P. Watt, M. C. Hughes, M. B. Davis, and A. C. Green, “Anatomic site, sun exposure, and risk of cutaneous melanoma,” Journal of Clinical Oncology, vol. 24, no. 19, pp. 3172–3177, 2006.
[39]  A. Kricker, B. K. Armstrong, C. Goumas et al., “Ambient UV, personal sun exposure and risk of multiple primary melanomas,” Cancer Causes and Control, vol. 18, no. 3, pp. 295–304, 2007.
[40]  E. Nagore, L. Hueso, R. Botella-Estrada et al., “Smoking, sun exposure, number of nevi and previous neoplasias are risk factors for melanoma in older patients (60 years and over),” Journal of the European Academy of Dermatology and Venereology, vol. 24, no. 1, pp. 50–57, 2010.
[41]  B. K. Armstrong and A. Kricker, “The epidemiology of UV induced skin cancer,” Journal of Photochemistry and Photobiology B, vol. 63, no. 1–3, pp. 8–18, 2001.
[42]  R. Zanetti, S. Rosso, C. Martinez et al., “Comparison of risk patterns in carcinoma and melanoma of the skin in men: a multi-centre case-case-control study,” British Journal of Cancer, vol. 94, no. 5, pp. 743–751, 2006.
[43]  J. Han, G. A. Colditz, and D. J. Hunter, “Risk factors for skin cancers: a nested case-control study within the Nurses' Health Study,” International Journal of Epidemiology, vol. 35, no. 6, pp. 1514–1521, 2006.
[44]  J. M. Elwood, R. P. Gallagher, G. B. Hill, and J. C. G. Pearson, “Cutaneous melanoma in relation to intermittent and constant sun exposure: the Western Canada melanoma study,” International Journal of Cancer, vol. 35, no. 4, pp. 427–433, 1985.
[45]  R. M. MacKie, “Incidence, risk factors and prevention of melanoma,” European Journal of Cancer, vol. 34, supplement 3, pp. S3–S4, 1998.
[46]  B. K. Armstrong, “How sun exposure causes skin cancer: an epidemiological perspective,” in Prevention of Skin Cancer: Cancer Prevention, Cancer Causes, D. Hill, J. M. Elwood, and D. R. English, Eds., Kluwer Academic Publishers, Boston, Mass, USA, 2004.
[47]  S. Gandini, F. Sera, M. S. Cattaruzza et al., “Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure,” European Journal of Cancer, vol. 41, no. 1, pp. 45–60, 2005.
[48]  P. Autier, G. Severi, R. Pedeux et al., “Number and size of nevi are influenced by different sun exposure components: implications for the etiology of cutaneous melanoma (Belgium, Germany, France, Italy),” Cancer Causes and Control, vol. 14, no. 5, pp. 453–459, 2003.
[49]  D. C. Whiteman, C. A. Whiteman, and A. C. Green, “Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies,” Cancer Causes and Control, vol. 12, no. 1, pp. 69–82, 2001.
[50]  K. Hemminki, V. J. Bykov, J. A. Marcusson, P. Autier, R. Pedeux, and J. F. Dore, “Re: sunscreen use and duration of sun exposure: a double-blind, randomized trial,” Journal of the National Cancer Institute, vol. 91, no. 23, pp. 2046–2047, 1999.
[51]  V. J. Bykov, J. A. Marcusson, and K. Hemminki, “Protective effects of tanning on cutaneous DNA damage in situ,” Dermatology, vol. 202, no. 1, pp. 22–26, 2001.
[52]  J. Ruegemer, B. Schuetz, K. Hermann, R. Hein, J. Ring, and D. Abeck, “UV-induced skin changes due to regular use of commercial sunbeds,” Photodermatology Photoimmunology and Photomedicine, vol. 18, no. 5, pp. 223–227, 2002.
[53]  D.-N. Hu, “Photobiology of ocular melanocytes and melanoma,” Photochemistry and Photobiology, vol. 81, no. 3, pp. 506–509, 2005.
[54]  C. M. Vajdic, A. Kricker, M. Giblin et al., “Sun exposure predicts risk of ocular melanoma in Australia,” International Journal of Cancer, vol. 101, no. 2, pp. 175–182, 2002.
[55]  J. A. Shields and S. C. Shields, Intraocuiar Tumor: A Text and Atlas, WB Saunders, Philadelphia, Pa, USA, 1992.
[56]  A. D. Singh, I. G. Rennie, S. Seregard, M. Giblin, and J. McKenzie, “Sunlight exposure and pathogenesis of uveal melanoma,” Survey of Ophthalmology, vol. 49, no. 4, pp. 419–428, 2004.
[57]  R. E. Neale, M. Davis, N. Pandeya, D. C. Whiteman, and A. C. Green, “Basal cell carcinoma on the trunk is associated with excessive sun exposure,” Journal of the American Academy of Dermatology, vol. 56, no. 3, pp. 380–386, 2007.
[58]  IARC, “Exposure to artificial UV radiation and skin cancer/views and expert opinions of an IARC Working Group that met in Lyon, France 27–29 June 2005,” International Agency for Research on Cancer, 2006.
[59]  National Toxicology Program, “Ultraviolet radiation related exposures: broad-spectrum ultraviolet (UV) radiation, UVA, UVB, UVC, solar radiation, and exposure to sunlamps and sunbeds,” Report on Carcinogens, vol. 10, pp. 250–254, 2002.
[60]  F. El Ghissassi, R. Baan, K. Straif et al., “A review of human carcinogens. Part D: radiation,” The lancet oncology, vol. 10, no. 11, pp. 751–752, 2009.
[61]  W. Z. Maughan, S. A. Muller, and H. O. Perry, “Incidence of skin cancers in patients with atopic dermatitis treated with coal tar. A 25-year follow-up study,” Journal of the American Academy of Dermatology, vol. 3, no. 6, pp. 612–615, 1980.
[62]  M. R. Pittelkow, H. O. Perry, S. A. Muller, W. Z. Maughan, and P. C. O'Brien, “Skin cancer in patients with psoriasis treated with coal Tar. A 25-year follow-up study,” Archives of Dermatology, vol. 117, no. 8, pp. 465–468, 1981.
[63]  K. M. Halprin, M. Comerford, and J. R. Taylor, “Cancer in patients with psoriasis,” Journal of the American Academy of Dermatology, vol. 7, no. 5, pp. 633–638, 1982.
[64]  O. Larko and G. Swanbeck, “Is UVB treatment of psoriasis safe? A study of extensively UVB-treated psoriasis patients compared with a matched control group,” Acta Dermato-Venereologica, vol. 62, supplement, no. 6, pp. 507–512, 1982.
[65]  S. M. Bhate, G. R. Sharpe, J. M. Marks, S. Shuster, and W. M. Ross, “Prevalence of skin and other cancers in patients with psoriasis,” Clinical and Experimental Dermatology, vol. 18, no. 5, pp. 401–404, 1993.
[66]  R. S. Stern and N. Laird, “The carcinogenic risk of treatments for severe psoriasis. Photochemotherapy Follow-up Study,” Cancer, vol. 73, pp. 2759–2764, 1994.
[67]  M. Weischer, A. Blum, F. Eberhard, M. R?cken, and M. Berneburg, “No evidence for increased skin cancer risk in psoriasis patients treated with broadband or narrowband UVB phototherapy: a first retrospective study,” Acta Dermato-Venereologica, vol. 84, no. 5, pp. 370–374, 2004.
[68]  E. Lee, J. Koo, and T. Berger, “UVB phototherapy and skin cancer risk: a review of the literature,” International Journal of Dermatology, vol. 44, no. 5, pp. 355–360, 2005.
[69]  R. M. R. Hearn, A. C. Kerr, K. F. Rahim, J. Ferguson, and R. S. Dawe, “Incidence of skin cancers in 3867 patients treated with narrow-band ultraviolet B phototherapy,” British Journal of Dermatology, vol. 159, no. 4, pp. 931–935, 2008.
[70]  B. Lindel?f, B. Sigurgeirsson, E. Tegner et al., “PUVA and cancer risk: the Swedish follow-up study,” British Journal of Dermatology, vol. 141, no. 1, pp. 108–112, 1999.
[71]  R. S. Stern, “The risk of melanoma in association with long-term exposure to PUVA,” Journal of the American Academy of Dermatology, vol. 44, no. 5, pp. 755–761, 2001.
[72]  R. S. Stern and E. J. Lunder, “Risk of squamous cell carcinoma and methoxsalen (psoralen) and UV-A radiation (PUVA): a meta-analysis,” Archives of Dermatology, vol. 134, no. 12, pp. 1582–1585, 1998.
[73]  R. S. Stern, “PUVA Follow-Up Study. The risk of squamous cell and basal cell cancer associated with psoralen and ultraviolet A therapy: a 30-year prospective study,” Journal of the American Academy of Dermatology, vol. 66, no. 4, pp. 553–562, 2012.
[74]  J. A. Bain, H. P. Rusch, and B. E. Kline, “The effect of temperature upon ultraviolet carcinogenesis with wavelength 2.800–3.400??,” Cancer Research, vol. 3, pp. 610–612, 1943.
[75]  G. A. G. Peterkin, “Malignant changes in erythema ab igne,” British Medical Journal, vol. 31, no. 2, pp. 1599–1602, 1955.
[76]  R. G. Freeman and J. M. Knox, “Influence of temperature on ultraviolet injury,” Archives of dermatology, vol. 89, pp. 858–864, 1964.
[77]  G. R. Finlayson, W. M. Sams Jr., and J. G. Smith, “Erythema ab igne: a histopathological study,” Journal of Investigative Dermatology, vol. 46, no. 1, pp. 104–108, 1966.
[78]  F. Cross, “On a turf (peat) fire cancer: malignant change superimposed on erythema ab igne,” Proceedings of the Royal Society of Medicine, vol. 60, no. 12, pp. 1307–1308, 1967.
[79]  J. H. Arrington III and D. S. Lockman, “Thermal keratoses and squamous cell carcinoma in situ associated with erythema ab igne,” Archives of Dermatology, vol. 115, no. 10, pp. 1226–1228, 1979.
[80]  L. H. Kligman, “Intensification of ultraviolet-induced dermal damage by infrared radiation,” Archives of Dermatological Research, vol. 272, no. 3-4, pp. 229–238, 1982.
[81]  C. S. Jones, S. K. Tyring, P. C. Lee, and J. D. Fine, “Development of neuroendocrine (Merkel cell) carcinoma mixed with squamous cell carcinoma in erythema ab igne,” Archives of Dermatology, vol. 124, no. 1, pp. 110–113, 1988.
[82]  T. Akasaka and S. Kon, “Two cases of squamous cell carcinoma arising from erythema ab igne,” Nippon Hifuka Gakkai zasshi, vol. 99, no. 6, pp. 735–742, 1989.
[83]  J. B. Hewitt, A. Sherif, K. M. Kerr, and L. Stankler, “Merkel cell and squamous cell carcinomas arising in erythema ab igne,” British Journal of Dermatology, vol. 128, no. 5, pp. 591–592, 1993.
[84]  M. V. Iacocca, J. L. Abernethy, C. M. Stefanato, A. E. Allan, and J. Bhawan, “Mixed Merkel cell carcinoma and squamous cell carcinoma of the skin,” Journal of the American Academy of Dermatology, vol. 39, no. 5, pp. 882–887, 1998.
[85]  P. Boukamp, S. Popp, K. Bleuel, E. Tomakidi, A. Bürkle, and N. E. Fusenig, “Tumorigenic conversion of immortal human skin keratinocytes (HaCaT) by elevated temperature,” Oncogene, vol. 18, no. 41, pp. 5638–5645, 1999.
[86]  C. M. Rudolph, H. P. Soyer, P. Wolf, and H. Kerl, “Squamous cell carcinoma arising in Erythema ab igne,” Hautarzt, vol. 51, no. 4, pp. 260–263, 2000.
[87]  J. B. Wharton, D. J. Sheehan, and J. L. Lesher Jr., “Squamous cell carcinoma in situ arising in the setting of erythema ab igne,” Journal of Drugs in Dermatology, vol. 7, no. 5, pp. 488–489, 2008.
[88]  A. B?er, M. Wolter, and R. Kaufmann, “Pseudomelanoma following laser treatment or laser-treated melanoma?” Journal of the German Society of Dermatology, vol. 1, no. 1, pp. 47–50, 2003.
[89]  B. S. Kim, J. B. Lee, H. S. Jang, Y. W. Kwon, K. S. Kwon, and C. K. Oh, “Multiple basal cell carcinomas arising in a port-wine stain with a remote history of therapeutic irradiation,” Journal of Dermatology, vol. 31, no. 10, pp. 820–823, 2004.
[90]  L. Hedelund, M. Haedersdal, H. Egekvist, M. Heidenheim, H. C. Wulf, and T. Poulsen, “CO2 laser resurfacing and photocarcinogenesis: an experimental study,” Lasers in Surgery and Medicine, vol. 35, no. 1, pp. 58–61, 2004.
[91]  Z. F. Jasim, W. K. Woo, M. Y. Walsh, and J. M. Handley, “Multifocal basal cell carcinoma developing in a facial port wine stain treated with argon and pulsed dye laser: a possible role for previous radiotherapy,” Dermatologic Surgery, vol. 30, no. 8, pp. 1155–1157, 2004.
[92]  Y.-C. Bae, Y.-S. Kang, C.-K. Oh, and S.-M. Hwang, “A report of 12 cases of basal cell carcinoma arising in lesions following laser therapy,” Annals of Plastic Surgery, vol. 54, no. 4, pp. 384–386, 2005.
[93]  S. S. Kelishadi, G. A. Wirth, and G. R. D. Evans, “Recalcitrant verrucous lesion: verrucous hyperplasia or epithelioma cuniculatum (verrucous carcinoma),” Journal of the American Podiatric Medical Association, vol. 96, no. 2, pp. 148–153, 2006.
[94]  M.-W. Lee, S.-J. Ahn, J.-H. Choi, K.-C. Moon, and J.-K. Koh, “Pseudomelanoma following laser therapy,” Journal of the European Academy of Dermatology and Venereology, vol. 20, no. 3, pp. 342–344, 2006.
[95]  C. Gottschaller, U. Hohenleutner, and M. Landthaler, “Metastasis of a malignant melanoma 2 years after carbon dioxide laser treatment of a pigmented lesion: case report and review of the literature,” Acta Dermato-Venereologica, vol. 86, no. 1, pp. 44–47, 2006.
[96]  J. I. Na, K. H. Cho, Y. G. Kim, and K. C. Park, “Angioblastoma showing aggravation after treatment with long-pulsed Nd:YAG laser (1064?nm),” Pediatric Dermatology, vol. 24, no. 4, pp. 397–400, 2007.
[97]  J. Dvorácková, J. Stěrba, L. Ceganová et al., “Problems of suitability laser's excision of pigmented dermal lesions: case report of minimal deviation melanoma,” Ceskoslovenská patologie, vol. 43, no. 2, pp. 64–67, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133