Drug-induced toxic epidermal necrolysis (TEN) and acute cutaneous graft-versus-host reaction (GVHR) under immunopreventive therapy share some histopathological resemblance. So far, there are no serum biomarkers and no immunohistochemical criteria distinguishing with confidence and specificity the skin lesions of TEN and GVHR. Both diseases present as an inflammatory cell-poor necrotic reaction of the epidermis. This report compares three sets of 15 immunostaining patterns found in TEN, GVHR, and partial thickness thermal burns (PTTB), respectively. Three series of 17 skin biopsies were scrutinized. Irrespective of the distinct causal pathobiology of TEN and GVHR, similar secondary effector cells were recruited in lesional skin. Burns were less enriched in cells of the monocyte-macrophage disease. These cells likely exert deleterious effects in TEN and GVHR and cannot be simply regarded as passive bystanders. These life-threatening conditions are probably nursed, at least in part, by macrophages. 1. Introduction Toxic epidermal necrolysis (TEN), formerly called under its eponym Lyell’s syndrome, is a severe cutaneous adverse reaction (SCAR) to drugs [1]. Conceptually, both TEN and the Stevens-Johnson syndrome (SJS) are likely part of the same continuum of clinical presentations [2–6], and they are regarded to be likely distinct from erythema multiforme [7–9]. The precise TEN pathomechanism remains unclear [1, 5, 10–12]. Some toxic metabolites and/or cytotoxic inflammatory cells induce epithelial apoptosis and necrosis [5, 13–15]. Cytotoxic lymphocytes, regulatory T cells (Treg), macrophages, and dermal dendrocytes (DD) are likely involved, and they probably represent more than passive bystanders [16–20]. Graft-versus-host reaction (GVHR), both in its acute and chronic stages, is responsible for both potentially severe morbidity and mortality [21, 22]. GVHR remains quite frequent in susceptible groups of patients as about half of recipients of allogeneic hematopoietic cell transplantation (HCT) develop GVHR [23–25]. This condition results from a complex and intricate pathobiology sustained by interactions between the donor and host innate and adaptive immune responses. A number of lymphocyte subsets (naive, memory, Treg, Th1, Th17, NK,?…) are involved, as well as eosinophils, mesenchymal stem cells and the monocyte-macrophage lineage including Factor XIIIa+ DD [26–30]. There is an overlap in a series of histopathological signs between early GVHR and various other posttransplantation diseases including some viral exanthems, immune reconstitution rash, and
References
[1]
G. E. Piérard and P. Paquet, “Facing up to toxic epidermal necrolysis,” Expert Opinion on Pharmacotherapy, vol. 11, no. 15, pp. 2443–2446, 2010.
[2]
P. O. Fritsch and A. Sidoroff, “Drug-induced Stevens-Johnson syndrome/toxic epidermal necrolysis,” American Journal of Clinical Dermatology, vol. 1, no. 6, pp. 349–360, 2000.
[3]
R. Abe, T. Shimizu, A. Shibaki, H. Nakamura, H. Watanabe, and H. Shimizu, “Toxic epidermal necrolysis and Stevens-Johnson syndrome are induced by soluble fas ligand,” American Journal of Pathology, vol. 162, no. 5, pp. 1515–1520, 2003.
[4]
B. Khalili and S. L. Bahna, “Pathogenesis and recent therapeutic trends in Stevens-Johnson syndrome and toxic epidermal necrolysis,” Annals of Allergy, Asthma and Immunology, vol. 97, no. 3, pp. 272–281, 2006.
[5]
A. T. Borchers, J. L. Lee, S. M. Naguwa, G. S. Cheema, and M. E. Gershwin, “Stevens-Johnson syndrome and toxic epidermal necrolysis,” Autoimmunity Reviews, vol. 7, no. 8, pp. 598–605, 2008.
[6]
M. Mockenhaupt, “The current understanding of Stevens-Johnson syndrome and toxic epidermal necrolysis,” Expert Review of Clinical Immunology, vol. 7, no. 6, pp. 803–813, 2011.
[7]
R. Forman, G. Koren, and N. H. Shear, “Erythema multiforme, Stevens-Johnson syndrome and toxic epidermal necrolysis in children: a review of 10 years' experience,” Drug Safety, vol. 25, no. 13, pp. 965–972, 2002.
[8]
R. Watanabe, H. Watanabe, C. Sotozono, et al., “Critical factors differentiating erythema multiforme majus from Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN),” European Journal of Dermatology, vol. 21, no. 6, pp. 889–894, 2011.
[9]
S. Iwai, H. Sueki, H. Watanabe, et al., “Distinguishing between erythema multiforme major and Stevens-Johnson syndrome/toxic epidermal necrolysis immunopathologically,” Journal of Dermatology, vol. 39, no. 9, pp. 781–786, 2012.
[10]
F. A. Pereira, A. V. Mudgil, and D. M. Rosmarin, “Toxic epidermal necrolysis,” Journal of the American Academy of Dermatology, vol. 56, no. 2, pp. 181–200, 2007.
[11]
P. Paquet and G. E. Piérard, “New insights in toxic epidermal necrolysis (lyells syndrome): clinical considerations, pathobiology and targeted treatments revisited,” Drug Safety, vol. 33, no. 3, pp. 189–212, 2010.
[12]
A. Downey, C. Jackson, N. Harun, et al., “Toxic epidermal necrolysis: review of pathogenesis and management,” Journal of the American Academy of Dermatology, vol. 66, no. 6, pp. 995–1003, 2012.
[13]
C. Paul, P. Wolkenstein, H. Adle et al., “Apoptosis as a mechanism of keratinocyte death in toxic epidermal necrolysis,” British Journal of Dermatology, vol. 134, no. 4, pp. 710–714, 1996.
[14]
P. Paquet and G. E. Pierard, “Toxic epidermal necrolysis: revisiting the tentative link between early apoptosis and late necrosis (Review),” International Journal of Molecular Medicine, vol. 19, no. 1, pp. 3–10, 2007.
[15]
P. Paquet, P. Delvenne, and G. E. Piérard, “Drug interactions with normal and TEN epidermal keratinocytes,” Current Drug Safety, vol. 7, no. 5, pp. 352–356, 2012.
[16]
P. Paquet, A. Nikkels, J. E. Arrese, A. Vanderkelen, and G. E. Pierard, “Macrophages and tumor necrosis factor α in toxic epidermal necrolysis,” Archives of Dermatology, vol. 130, no. 5, pp. 605–608, 1994.
[17]
W. H. Chung, S. I. Hung, J. Y. Yang et al., “Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis,” Nature Medicine, vol. 14, no. 12, pp. 1343–1350, 2008.
[18]
P. Paquet, P. Quatresooz, and G. E. Piérard, “Factor-XIIIa-positive dendrocytes in drug-induced toxic epidermal necrolysis (Lyell's syndrome): paradoxical activation in skin and rarefaction in lymph nodes,” Dermatology, vol. 206, no. 4, pp. 374–378, 2003.
[19]
P. Paquet, D. de Groote, and G. E. Piérard, “Functionally active macrophage-derived myeloperoxidase in the skin of drug-induced toxic epidermal necrolysis,” Dermatology, vol. 220, no. 3, pp. 201–207, 2010.
[20]
M. Tohyama, H. Watanabe, S. Murakami, et al., “Possible involvement of CD14+ CD16+ monocyte lineage cells in the epidermal damage of Stevens-Johnson syndrome and toxic epidermal necrolysis,” British Journal of Dermatology, vol. 166, no. 2, pp. 322–330, 2012.
[21]
D. Couriel, H. Caldera, R. Champlin, and K. Komanduri, “Acute graft-versus-host disease: pathophysiology, clinical manifestations, and management,” Cancer, vol. 101, no. 9, pp. 1936–1946, 2004.
[22]
P. H?usermann, R. B. Walter, J. Halter, et al., “Cutaneous graft-versus-host disease: a guide for the dermatologist,” Dermatology, vol. 216, no. 4, pp. 287–304, 2008.
[23]
M. Mielcarek, P. J. Martin, W. Leisenring et al., “Graft-versus-host disease after nonmyeloablative versus conventional hematopoietic stem cell transplantation,” Blood, vol. 102, no. 2, pp. 756–762, 2003.
[24]
J. V. Schaffer, “The changing face of graft-versus-host disease,” Seminars in Cutaneous Medicine and Surgery, vol. 25, no. 4, pp. 190–200, 2006.
[25]
S. Paczesny, D. Hanauer, Y. Sun, and P. Reddy, “New perspectives on the biology of acute GVHD,” Bone Marrow Transplantation, vol. 45, no. 1, pp. 1–11, 2010.
[26]
Y. H. Yoo, B. S. Park, D. Whitaker-Menezes, R. Korngold, and G. F. Murphy, “Dermal dendrocytes participate in the cellular pathology of experimental acute graft-versus-host disease,” Journal of Cutaneous Pathology, vol. 25, no. 8, pp. 426–434, 1998.
[27]
P. Paquet, J. E. Arrese, Y. Beguin, and G. E. Piérard, “Clinicopathological differential diagnosis of drug-induced toxic epidermal necrolysis (Lyell's syndrome) and acute graft-versus-host reaction,” Current Topics in Pathology, vol. 94, pp. 49–63, 2001.
[28]
A. D. Hess, “Modulation of graft-versus-host disease: role of regulatory T lymphocytes,” Biology of Blood and Marrow Transplantation, vol. 12, no. 2, pp. 13–21, 2006.
[29]
D. Noguchi, D. Wakita, T. Ohkuri et al., “Blockade of IL-6-signaling inhibits the pathogenesis of CD4+ T cell-mediated lethal graft-versus-host reaction against minor histocompatibility antigen,” Immunology Letters, vol. 136, no. 2, pp. 146–155, 2011.
[30]
V. R. Sharon, T. H. Konia, K. L. Barr, et al., “Assessment of the “no eosinophils” rule : are eosinophils truly absent in pityriasis lichenoides, connective tissue disease, and graft-vs-host disease?” Journal of Cutaneous Pathology, vol. 39, no. 4, pp. 413–418, 2012.
[31]
A. C. Gilliam, D. Whitaker-Menezes, R. Korngold, and G. F. Murphy, “Apoptosis is the predominant form of epithelial target cell injury in acute experimental graft-versus-host disease,” Journal of Investigative Dermatology, vol. 107, no. 3, pp. 377–383, 1996.
[32]
D. Whitaker-Menezes, S. C. Jones, T. M. Friedman, R. Korngold, and G. F. Murphy, “An epithelial target site in experimental graft-versus-host disease and cytokine-mediated cytotoxicity is defined by cytokeratin 15 expression,” Biology of Blood and Marrow Transplantation, vol. 9, no. 9, pp. 559–570, 2003.
[33]
C. C. Hofmeister, A. Quinn, K. R. Cooke, P. Stiff, B. Nickoloff, and J. L. M. Ferrara, “Graft-versus-host disease of the skin: life and death on the epidermal edge,” Biology of Blood and Marrow Transplantation, vol. 10, no. 6, pp. 366–372, 2004.
[34]
J. L. M. Ferrara, K. R. Cooke, T. Teshima, et al., “The pathophysiology of graft-versus-host disease,” in Graft-Versus-Host Disease, J. Ferrara, K. Cooke, and H. J. Deeg, Eds., pp. 1–34, Dekker, New York, NY, USA, 2005.
[35]
Q. Zhan, S. Signoretti, D. Whitaker-Menezes, T. M. Friedman, R. Korngold, and G. F. Murphy, “Cytokeratin15-positive basal epithelial cells targeted in graft-versus-host disease express a constitutive antiapoptotic phenotype,” Journal of Investigative Dermatology, vol. 127, no. 1, pp. 106–115, 2007.
[36]
S. Kohler, M. R. Hendrickson, N. J. Chao, and B. R. Smoller, “Value of skin biopsies in assessing prognosis and progression of acute graft-versus-host disease,” American Journal of Surgical Pathology, vol. 21, no. 9, pp. 988–996, 1997.
[37]
G. E. Piérard, N. Nikkels-Tassoudji, A. F. Nikkels, et al., “Epidermal calprotectin expression in lymphocyte-depleted cutaneous graft-versus-host reaction,” Archives of Argentinos Dermatology, vol. 48, pp. 139–142, 1998.
[38]
G. E. Pierard, N. Nikkels-Tassoudji, J. E. Arrese, A. F. Nikkels, T. H. Le, and C. P. Franchimont, “L1-protein in incipient lymphocyte-depleted graft-versus-host disease. Expression in keratinocytes and coexpression with factor XIIIa in dermal cells,” Turkish Journal of Dermatopathology, vol. 7, no. 1-2, pp. 10–13, 1998.
[39]
T. Hermanns-Lê, P. Paquet, C. Piérard-Franchimont, J. E. Arrese, and G. E. Piérard, “Regulatory function of factor-XIIIa-positive dendrocytes in incipient toxic epidermal necrolysis and graft-versus-host reaction. A hypothesis,” Dermatology, vol. 198, no. 2, pp. 184–186, 1999.
[40]
Y. Zhou, M. J. Barnett, and J. K. Rivers, “Clinical significance of skin biopsies in the diagnosis and management of graft-vs-host disease in early postallogeneic bone marrow transplantation,” Archives of Dermatology, vol. 136, no. 6, pp. 717–721, 2000.
[41]
D. Heldal, L. Brinch, S. A. Evensen et al., “Skin biopsies for early diagnosis and prognosis of graft-versus-host disease in recipients of allogeneic stem cells from blood or bone marrow,” Bone Marrow Transplantation, vol. 34, no. 4, pp. 345–350, 2004.
[42]
A. T. Bridge, R. P. Nelson, J. E. Schwartz, G. W. Mirowski, and S. D. Billings, “Histological evaluation of acute mucocutaneous graft-versus-host disease in nonmyeloablative hematologic stem cell transplants with an observation predicting an increased risk of progression to chronic graft-versus-host disease,” American Journal of Dermatopathology, vol. 29, no. 1, pp. 1–6, 2007.
[43]
C. Merle, D. Blanc, M. Flesch, et al., “A picture of epidermal necrolysis after hepatic allograft. Etiologic aspects,” Annales of Dermatology and Venereology, vol. 117, no. 9, pp. 635–639, 1990.
[44]
G. Villada, J. C. Roujeau, C. Cordonnier et al., “Toxic epidermal necrolysis after bone marrow transplantation: study of nine cases,” Journal of the American Academy of Dermatology, vol. 23, no. 5, pp. 870–875, 1990.
[45]
H. Takeda, Y. Mitsuhashi, S. Kondo, Y. I. Kato, and K. Tajima, “Toxic epidermal necrolysis possibly linked to hyperacute graft-versus- host disease after allogeneic bone marrow transplantation,” Journal of Dermatology, vol. 24, no. 10, pp. 635–641, 1997.
[46]
N. Stone, S. Sheerin, and S. Burge, “Toxic epidermal necrolysis and graft vs. host disease: a clinical spectrum but a diagnostic dilemma,” Clinical and Experimental Dermatology, vol. 24, no. 4, pp. 260–262, 1999.
[47]
F. P. Nestel, K. S. Price, T. A. Seemayer, and W. S. Lapp, “Macrophage priming and lipopolysaccharide-triggered release of tumor necrosis factor α during graft-versus-host disease,” Journal of Experimental Medicine, vol. 175, no. 2, pp. 405–413, 1992.
[48]
T. Hermanns-Lê, P. Paquet, A. F. Nikkels, C. Piérard-Franchimont, and G. E. Piérard, “Prolonged imiquimod treatment and graft-versus-host reaction: histological mimicry in the skin infiltration pattern of the monocyte-macrophage-dendrocyte lineage,” Dermatology, vol. 206, no. 4, pp. 361–365, 2003.
[49]
P. Quatresooz, P. Paquet, T. Hermanns-Lê, and G. E. Piérard, “Molecular mapping of factor XIIIa-enriched dendrocytes in the skin (review),” International Journal of Molecular Medicine, vol. 22, no. 4, pp. 403–409, 2008.