全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Epidermal Growth Factor Receptor Increases Cytokine Production and Cutaneous Inflammation in Response to Ultraviolet Irradiation

DOI: 10.1155/2013/848705

Full-Text   Cite this paper   Add to My Lib

Abstract:

The epidermal growth factor receptor (EGFR) is activated in cutaneous keratinocytes upon ultraviolet (UV) exposure and has been implicated in ultraviolet-(UV-)induced inflammation and skin tumorigenesis. Egfr mutant mice and EGFR inhibitors were used to investigate the hypothesis that EGFR activation augments inflammation following UV irradiation. Topical treatment of mouse skin with the EGFR inhibitor AG1478 before UV exposure suppressed UV-induced erythema, edema, mast cell infiltration, and neutrophil infiltration. Genetic ablation of Egfr and EGFR inhibition by AG1478 also suppressed the increase in the proinflammatory cytokines tumor necrosis factor α (TNF-α), interleukin-1α, KC (murine IL-8), and cyclooxygenase-2 (COX-2) after UV exposure of cultured keratinocytes. Finally, genetic ablation of inhibition of EGFR in cultured keratinocytes decreased p38 activation after UV, while inhibition of p38 kinase reduced COX-2 expression after UV. These data demonstrate that EGFR regulates multiple aspects of UV-induced inflammation and suggest activation of p38 kinase leading to increased COX-2 and cytokine expression as one mechanism through which it acts. 1. Introduction Epidermal growth factor receptor (EGFR) signaling is involved in important aspects of cutaneous biology, including the regulation of epidermal proliferation, apoptosis, cell adhesion, and migration. For example, EGFR signaling appears to be important for such adaptive biologic processes as wound healing [1]. On the other hand, excessive EGFR signaling may participate in processes that are ultimately destructive to skin, such as in the skin’s carcinogenic response to ultraviolet (UV) exposure [2–4]. Solar UV radiation is a major environmental hazard that generates reactive oxygen species, induces DNA damage, and leads ultimately to skin inflammation, photoaging, and cancer development [5]. Erythema and edema are the grossly visible signs of UV-induced inflammation in mammalian skin [6]. These changes are associated histologically with dermal infiltration of neutrophils, followed later by macrophages and mast cells [7]. These cellular events are accompanied or preceded by the release of a wide variety of proinflammatory mediators, including certain enzymes and cytokines. For example, following skin exposure to UV light, levels of the pro-inflammatory enzyme cyclooxygenase-2 (COX-2) are increased [8], which in turn leads to production of prostaglandin E2 (PGE2), a potent mediator of UV-induced skin erythema [9]. In addition to the activation of various enzymes in all nucleated cells in the

References

[1]  S. K. Repertinger, E. Campagnaro, J. Fuhrman, T. El-Abaseri, S. H. Yuspa, and L. A. Hansen, “EGFR enhances early healing after cutaneous incisional wounding,” Journal of Investigative Dermatology, vol. 123, no. 5, pp. 982–989, 2004.
[2]  A. Knebel, H. J. Rahmsdorf, A. Ullrich, and P. Herrlich, “Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents,” The EMBO Journal, vol. 15, no. 19, pp. 5314–5325, 1996.
[3]  T. B. El-Abaseri, J. Fuhrman, C. Trempus, I. Shendrik, R. W. Tennant, and L. A. Hansen, “Chemoprevention of UV light-induced skin tumorigenesis by inhibition of the epidermal growth factor receptor,” Cancer Research, vol. 65, no. 9, pp. 3958–3965, 2005.
[4]  T. B. El-Abaseri, S. Putta, and L. A. Hansen, “Ultraviolet irradiation induces keratinocyte proliferation and epidermal hyperplasia through the activation of the epidermal growth factor receptor,” Carcinogenesis, vol. 27, no. 2, pp. 225–231, 2006.
[5]  V. O. Melnikova and H. N. Ananthaswamy, “Cellular and molecular events leading to the development of skin cancer,” Mutation Research, vol. 571, no. 1-2, pp. 91–106, 2005.
[6]  G. J. Clydesdale, G. W. Dandie, and H. K. Muller, “Ultraviolet light induced injury: immunological and inflammatory effects,” Immunology and Cell Biology, vol. 79, no. 6, pp. 547–568, 2001.
[7]  J. H. Chung, J. Y. Seo, M. K. Lee, et al., “Ultraviolet modulation of human macrophage metalloelastase in human skin in vivo,” Journal of Investigative Dermatology, vol. 119, no. 2, pp. 507–512, 2002.
[8]  C. S. Tripp, E. A. G. Blomme, K. S. Chinn, M. M. Hardy, P. LaCelle, and A. P. Pentland, “Epidermal COX-2 induction following ultraviolet irradiation: suggested mechanism for the role of COX-2 inhibition in photoprotection,” Journal of Investigative Dermatology, vol. 121, no. 4, pp. 853–861, 2003.
[9]  C. C. Miller, P. Hale, and A. P. Pentland, “Ultraviolet B injury increases prostaglandin synthesis through a tyrosine kinase-dependent pathway. Evidence for UVB-induced epidermal growth factor receptor activation,” Journal of Biological Chemistry, vol. 269, no. 5, pp. 3529–3533, 1994.
[10]  S. Kondo, T. Kono, D. N. Sauder, and R. C. McKenzie, “Il-8 gene expression and production in human keratinocytes and their modulation by UVB,” Journal of Investigative Dermatology, vol. 101, no. 5, pp. 690–694, 1993.
[11]  M. Yoshizumi, T. Nakamura, M. Kato et al., “Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT,” Cell Biology International, vol. 32, no. 11, pp. 1405–1411, 2008.
[12]  I. Strickland, L. E. Rhodes, B. F. Flanagan, and P. S. Friedmann, “TNF-α and IL-8 are upregulated in the epidermis of normal human skin after UVB exposure: correlation with neutrophil accumulation and E-selectin expression,” Journal of Investigative Dermatology, vol. 108, no. 5, pp. 763–768, 1997.
[13]  J. Krutmann and M. Grewe, “Involvement of cytokines, DNA damage, and reactive oxygen intermediates in ultraviolet radiation-induced modulation of intercellular adhesion molecule-1 expression,” Journal of Investigative Dermatology, vol. 105, supplement 1, pp. 67S–70S, 1995.
[14]  D. Luo, M. Yaar, A. Tsai, and B. A. Gilchrest, “Solar-simulated irradiation evokes a persistent and biphasic IL-1α response,” Experimental Dermatology, vol. 13, no. 1, pp. 11–17, 2004.
[15]  A. Kock, T. Schwarz, R. Kirnbauer et al., “Human keratinocytes are a source for tumor necrosis factor α: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light,” Journal of Experimental Medicine, vol. 172, no. 6, pp. 1609–1614, 1990.
[16]  M. Wlaschek, G. Heinen, A. Poswig, A. Schwarz, T. Krieg, and K. Scharffetter-Kochanek, “UVA-induced autocrine stimulation of fibroblast-derived collagenase/MMP-1 by interrelated loops of interleukin-1 and interleukin-6,” Photochemistry and Photobiology, vol. 59, no. 5, pp. 550–556, 1994.
[17]  X.-Y. Wang and Z.-G. Bi, “UVB-irradiated human keratinocytes and interleukin-1α indirectly increase MAP kinase/AP-1 activation and MMP-1 production in UVA-irradiated dermal fibroblasts,” Chinese Medical Journal, vol. 119, no. 10, pp. 827–831, 2006.
[18]  Y. Xu, Y. Shao, J. J. Voorhees, and G. J. Fisher, “Oxidative inhibition of receptor-type protein-tyrosine phosphatase κ by ultraviolet irradiation activates epidermal growth factor receptor in human keratinocytes,” Journal of Biological Chemistry, vol. 281, no. 37, pp. 27389–27397, 2006.
[19]  A. L. Kim, J. M. Labasi, Y. Zhu, et al., “Role of p38 MAPK in UVB-induced inflammatory responses in the skin of SKH-1 hairless mice,” Journal of Investigative Dermatology, vol. 124, no. 6, pp. 1318–1325, 2005.
[20]  S. Kondo, “The roles of cytokines in photoaging,” Journal of Dermatological Science, vol. 23, supplement 1, pp. S30–S36, 2000.
[21]  W. Chen, Q. Tang, M. S. Gonzales, and G. T. Bowden, “Role of p38 MAP kinases and ERK in mediating ultraviolet-B induced cyclooxygenase-2 gene expression in human keratinocytes,” Oncogene, vol. 20, no. 29, pp. 3921–3926, 2001.
[22]  M. Ashida, T. Bito, A. Budiyanto, M. Ichihashi, and M. Ueda, “Involvement of EGF receptor activation in the induction of cyclooxygenase-2 in HaCaT keratinocytes after UVB,” Experimental Dermatology, vol. 12, no. 4, pp. 445–452, 2003.
[23]  U. Lichti, J. Anders, and S. H. Yuspa, “Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice,” Nature Protocols, vol. 3, no. 5, pp. 799–810, 2008.
[24]  D. W. Threadgill, A. A. Dlugosz, L. A. Hansen et al., “Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype,” Science, vol. 269, no. 5221, pp. 230–234, 1995.
[25]  K. Yano, K. Kadoya, K. Kajiya, Y.-K. Hong, and M. Detmar, “Ultraviolet B irradiation of human skin induces an angiogenic switch that is mediated by upregulation of vascular endothelial growth factor and by downregulation of thrombospondin-1,” British Journal of Dermatology, vol. 152, no. 1, pp. 115–121, 2005.
[26]  S. Guhl, R. Stefaniak, M. Strathmann et al., “Bivalent effect of UV light on human skin mast cells—low-level mediator release at baseline but potent suppression upon mast cell triggering,” Journal of Investigative Dermatology, vol. 124, no. 2, pp. 453–456, 2005.
[27]  M. Metz, V. Lammel, B. F. Gibbs, and M. Maurer, “Inflammatory murine skin responses to UV-B light are partially dependent on endothelin-1 and mast cells,” American Journal of Pathology, vol. 169, no. 3, pp. 815–822, 2006.
[28]  L. J. Walsh, “Ultraviolet B irradiation of skin induces mast cell degranulation and release of tumour necrosis factor-α,” Immunology and Cell Biology, vol. 73, no. 3, pp. 226–233, 1995.
[29]  T. A. Wilgus, M. L. Parrett, M. S. Ross, K. L. Tober, F. M. Robertson, and T. M. Oberyszyn, “Inhibition of ultraviolet light B-induced cutaneous inflammation by a specific cyclooxygenase-2 inhibitor,” Advances in Experimental Medicine and Biology, vol. 507, pp. 85–92, 2002.
[30]  D. M. Ouwens, N. D. de Ruiter, G. C. M. van der Zon et al., “Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RaIGDS-Src-p38,” The EMBO Journal, vol. 21, no. 14, pp. 3782–3793, 2002.
[31]  R. M. Hobbs and F. M. Watt, “Regulation of interleukin-1αa expression by integrins and epidermal growth factor receptor in keratinocytes from a mouse model of inflammatory skin disease,” Journal of Biological Chemistry, vol. 278, no. 22, pp. 19798–19807, 2003.
[32]  S. Pastore, F. Mascia, F. Mariotti, C. Dattilo, V. Mariani, and G. Girolomoni, “ERK1/2 regulates epidermal chemokine expression and skin inflammation,” Journal of Immunology, vol. 174, no. 8, pp. 5047–5056, 2005.
[33]  J. Hildesheim, R. T. Awwad, and A. J. Fornace Jr., “p38 Mitogen-activated protein kinase inhibitor protects the epidermis against the acute damaging effects of ultraviolet irradiation by blocking apoptosis and inflammatory responses,” Journal of Investigative Dermatology, vol. 122, no. 2, pp. 497–502, 2004.
[34]  T. A. Wilgus, A. T. Koki, B. S. Zweifel, D. F. Kusewitt, P. A. Rubal, and T. M. Oberyszyn, “Inhibition of cutaneous ultraviolet light B-mediated inflammation and tumor formation with topical celecoxib treatment,” Molecular Carcinogenesis, vol. 38, no. 2, pp. 49–58, 2003.
[35]  S. Trompezinski, I. Pernet, D. Schmitt, and J. Viac, “UV radiation and prostaglandin E2 up-regulate vascular endothelial growth factor (VEGF) in cultured human fibroblasts,” Inflammation Research, vol. 50, no. 8, pp. 422–427, 2001.
[36]  T. A. Wilgus, A. T. Koki, B. S. Zweifel, P. A. Rubal, and T. M. Oberyszyn, “Chemotherapeutic efficacy of topical celecoxib in a murine model of ultraviolet light B-induced skin cancer,” Molecular Carcinogenesis, vol. 38, no. 1, pp. 33–39, 2003.
[37]  G. J. Fisher, S. Kang, J. Varani et al., “Mechanisms of photoaging and chronological skin aging,” Archives of Dermatology, vol. 138, no. 11, pp. 1462–1470, 2002.
[38]  K. P. An, M. Athar, X. Tang, et al., “Cyclooxygenase-2 expression in murine and human nonmelanoma skin cancers: implications for therapeutic approaches,” Photochemistry and Photobiology, vol. 76, no. 1, pp. 73–80, 2002.
[39]  J. E. Rundhaug, C. Mikulec, A. Pavone, and S. M. Fischer, “A role for cyclooxygenase-2 in ultraviolet light-induced skin carcinogenesis,” Molecular Carcinogenesis, vol. 46, no. 8, pp. 692–698, 2007.
[40]  A. Johnston, J. E. Gudjonsson, A. Aphale, A. M. Guzman, S. W. Stoll, and J. T. Elder, “EGFR and IL-1 signaling synergistically promote keratinocyte antimicrobial defenses in a differentiation-dependent manner,” Journal of Investigative Dermatology, vol. 131, no. 2, pp. 329–337, 2011.
[41]  F. Mascia, C. Cataisson, T.-C. Lee et al., “EGFR regulates the expression of keratinocyte-derived granulocyte/macrophage colony-stimulating factor in vitro and in vivo,” Journal of Investigative Dermatology, vol. 130, no. 3, pp. 682–693, 2010.
[42]  S. T. Reddy, H. F. Tiano, R. Langenbach, S. G. Morham, and H. R. Herschman, “Genetic evidence for distinct roles of COX-1 and COX-2 in the immediate and delayed phases of prostaglandin synthesis in mast cells,” Biochemical and Biophysical Research Communications, vol. 265, no. 1, pp. 205–210, 1999.
[43]  U. Meyer-Hoffert, J. Wingertszahn, and O. Wiedow, “Human leukocyte elastase induces keratinocyte proliferation by epidermal growth factor receptor activation,” Journal of Investigative Dermatology, vol. 123, no. 2, pp. 338–345, 2004.
[44]  M. E. Lacouture, “Mechanisms of cutaneous toxicities to EGFR inhibitors,” Nature Reviews Cancer, vol. 6, no. 10, pp. 803–812, 2006.
[45]  J. G. Madson, D. T. Lynch, K. L. Tinkum, S. K. Putta, and L. A. Hansen, “Erbb2 regulates inflammation and proliferation in the skin after ultraviolet irradiation,” American Journal of Pathology, vol. 169, no. 4, pp. 1402–1414, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133