全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Clinical Presentation, Pathogenesis, Diagnosis, and Treatment of Epidermolysis Bullosa Acquisita

DOI: 10.1155/2013/812029

Full-Text   Cite this paper   Add to My Lib

Abstract:

Epidermolysis bullosa acquisita (EBA) is a chronic mucocutaneous autoimmune skin blistering disease. The pathogenic relevance of autoantibodies targeting type VII collagen (COL7) has been well-documented. Therefore, EBA is a prototypical autoimmune disease with a well-characterized pathogenic relevance of autoantibody binding to the target antigen. EBA is a rare disease with an incidence of 0.2 new cases per million and per year. The current treatment of EBA relies on general immunosuppressive therapy, which does not lead to remission in all cases. Therefore, there is a high, so far unmet medical need for the development of novel therapeutic options. During the last 10 years, several novel in vitro and in vivo models of EBA have been established. These models demonstrated a critical role of the genetic background, T cells, and cytokines for mediating the loss of tolerance towards COL7. Neutrophils, complement activation, Fc gamma receptor engagement, cytokines, several molecules involved in cell signaling, release of reactive oxygen species, and matrix metalloproteinases are crucial for autoantibody-induced tissue injury in EBA. Based on this growing understanding of the diseases’ pathogenesis, several potential novel therapeutic targets have emerged. In this review, the clinical presentation, pathogenesis, diagnosis, and current treatment options for EBA are discussed in detail. 1. Clinical Presentation of Epidermolysis Bullosa Acquisita In the beginning of the 20th century, the term “epidermolysis bullosa acquisita” (EBA) was used as a descriptive clinical diagnosis for patients with adult onset and features resembling those of hereditary dystrophic epidermolysis bullosa [1]. Almost 70 years later, EBA was distinguished from other bullous diseases on the basis of distinctive clinical and histological features, implementing the first diagnostic criteria for the disease. Specifically, these included (i) clinical lesions resembling epidermolysis bullosa dystrophica, (ii) adult onset of disease, (iii) a negative family history of epidermolysis bullosa dystrophica, and (iv) exclusion of other bullous diseases [2]. Based on the current understanding of EBA pathogenesis, additional/other criteria define EBA diagnosis today (see Section 13). The cutaneous manifestations in EBA patients are heterogeneous. However, EBA patients can be classified into two major clinical subtypes: noninflammatory (classical or mechanobullous) and inflammatory EBA, which is characterized by cutaneous inflammation resembling bullous pemphigoid, linear IgA disease, mucous membrane

References

[1]  G. T. Elliott, “Two cases of epidermolysis bullosa,” Journal of Cutaneous and Genito-Urinary Diseases, vol. 13, article 10, 1895.
[2]  H. H. Roenigk Jr., J. G. Ryan, and W. F. Bergfeld, “Epidermolysis bullosa acquisita. Report of three cases and review of all published cases,” Archives of Dermatology, vol. 103, no. 1, pp. 1–10, 1971.
[3]  N. Ishii, T. Hamada, T. Dainichi et al., “Epidermolysis bullosa acquisita: what's new?” Journal of Dermatology, vol. 37, no. 3, pp. 220–230, 2010.
[4]  R. Gupta, D. T. Woodley, and M. Chen, “Epidermolysis bullosa acquisita,” Clinics in Dermatology, vol. 30, no. 1, pp. 60–69, 2012.
[5]  E. Schmidt and D. Zillikens, “Pemphigoid diseases,” The Lancet, vol. 381, pp. 320–332, 2013.
[6]  J. J. A. Buijsrogge, G. F. H. Diercks, H. H. Pas, and M. F. Jonkman, “The many faces of epidermolysis bullosa acquisita after serration pattern analysis by direct immunofluorescence microscopy,” British Journal of Dermatology, vol. 165, no. 1, pp. 92–98, 2011.
[7]  J. H. Kim, Y. H. Kim, and S.-C. Kim, “Epidermolysis bullosa acquisita: a retrospective clinical analysis of 30 cases,” Acta Dermato-Venereologica, vol. 91, no. 3, pp. 307–312, 2011.
[8]  C. Zumelzu, C. Le Roux-Villet, P. Loiseau et al., “Black patients of african descent and HLA-DRB115:03 frequency overrepresented in epidermolysis bullosa acquisita,” Journal of Investigative Dermatology, vol. 131, no. 12, pp. 2386–2393, 2011.
[9]  C. Lam and R. A. Vleugels, “Images in clinical medicine. Epidermolysis bullosa acquisita,” The New England Journal of Medicine, vol. 368, article e17, 2013.
[10]  T. T. Kuo, K. Baker, M. Yoshida et al., “Neonatal Fc receptor: from immunity to therapeutics,” Journal of Clinical Immunology, vol. 30, no. 6, pp. 777–789, 2010.
[11]  M. L. Abrams, A. Smidt, L. Benjamin, M. Chen, D. Woodley, and A. J. Mancini, “Congenital epidermolysis bullosa acquisita: vertical transfer of maternal autoantibody from mother to infant,” Archives of Dermatology, vol. 147, no. 3, pp. 337–341, 2011.
[12]  M. Chen, G. H. Kim, L. Prakash, and D. T. Woodley, “Epidermolysis bullosa acquisita: autoimmunity to anchoring fibril collagen,” Autoimmunity, vol. 45, no. 1, pp. 91–101, 2012.
[13]  P. G. Lang Jr. and M. J. Tapert, “Severe ocular involvement in a patient with epidermolysis bullosa acquisita,” Journal of the American Academy of Dermatology, vol. 16, no. 2, pp. 439–443, 1987.
[14]  M. Zierhut, H.-J. Thiel, E. G. Weidle, K.-P. Steuhl, K. Sonnichsen, and G. Schaumburg-Lever, “Ocular involvement in epidermolysis bullosa acquisita,” Archives of Ophthalmology, vol. 107, no. 3, pp. 398–401, 1989.
[15]  F. Caux, G. Kirtschig, F. Lemarchand-Venencie et al., “IgA-epidermolysis bullosa acquisita in a child resulting in blindness,” British Journal of Dermatology, vol. 137, no. 2, pp. 270–275, 1997.
[16]  A. Camara, P.-A. Bécherel, A. Bussel et al., “Resistant epidermolysis bullous acquisita with severe ocular involvement: successful extracorporeal photochemotherapy,” Annales de Dermatologie et de Venereologie, vol. 126, no. 8-9, pp. 612–615, 1999.
[17]  J. W. Bauer, H. Schaeppi, D. Metze et al., “Ocular involvement in IgA-epidermolysis bullosa acquisita,” British Journal of Dermatology, vol. 141, no. 5, pp. 887–892, 1999.
[18]  R. M. Vodegel, M. C. J. M. de Jong, H. H. Pas, and M. F. Jonkman, “IgA-mediated epidermolysis bullosa acquisita: two cases and review of the literature,” Journal of the American Academy of Dermatology, vol. 47, no. 6, pp. 919–925, 2002.
[19]  G. Kurzhals, W. Stolz, M. Meurer, J. Kunze, O. Braun-Falco, and T. Krieg, “Acquired epidermolysis bullosa with the clinical feature of Brunsting-Perry cicatricial bullous pemphigoid,” Archives of Dermatology, vol. 127, no. 3, pp. 391–395, 1991.
[20]  N. Wieme, J. Lambert, M. Moerman, M. L. Geerts, L. Temmerman, and J. M. Naeyaert, “Epidermolysis bullosa acquisita with combined features of bullous pemphigoid and cicatricial pemphigoid,” Dermatology, vol. 198, no. 3, pp. 310–313, 1999.
[21]  K. Taniuchi, M. Inaoki, Y. Nishimura, T. Mori, and K. Takehara, “Nonscarring inflammatory epidermolysis bullosa acquisita with esophageal involvement and linear IgG deposits,” Journal of the American Academy of Dermatology, vol. 36, no. 2, pp. 320–322, 1997.
[22]  K. E. Harman, L. R. Whittam, S. H. Wakelin, and M. M. Black, “Severe, refractory epidermolysis bullosa acquisita complicated by an oesophageal stricture responding to intravenous immune globulin,” British Journal of Dermatology, vol. 139, no. 6, pp. 1126–1127, 1998.
[23]  A. R. Shipman, A. L. Agero, I. Cook et al., “Epidermolysis bullosa acquisita requiring multiple oesophageal dilatations,” Clinical and Experimental Dermatology, vol. 33, no. 6, pp. 787–789, 2008.
[24]  J. E. Hester, D. P. Arnstein, and D. Woodley, “Laryngeal manifestations of epidermolysis bullosa acquisita,” Archives of Otolaryngology—Head and Neck Surgery, vol. 121, no. 9, pp. 1042–1044, 1995.
[25]  M. C. Luke, T. N. Darling, R. Hsu et al., “Mucosal morbidity in patients with epidermolysis bullosa acquisita,” Archives of Dermatology, vol. 135, no. 8, pp. 954–959, 1999.
[26]  A. S. Paller, L. L. Queen, and D. T. Woodley, “Organ-specific, phylogenetic, and ontogenetic distribution of the epidermolysis bullosa acquisita antigen,” Journal of Investigative Dermatology, vol. 86, no. 4, pp. 376–379, 1986.
[27]  R. Visser, J. W. Arends, I. M. Leigh, and F. T. Bosman, “Paterns and composition of basement membranes in colon adenomas and adenocarcinomas,” Journal of Pathology, vol. 170, no. 3, pp. 285–290, 1993.
[28]  N. Ishii, A. Recke, S. Mihai et al., “Autoantibody-induced intestinal inflammation and weight loss in experimental epidermolysis bullosa acquisita,” Journal of Pathology, vol. 224, no. 2, pp. 234–244, 2011.
[29]  M. Furue, M. Iwata, K. Tamaki, and Y. Ishibashi, “Anatomical distribution and immunological characteristics of epidermolysis bullosa acquisita antigen and bullous pemphigoid antigen,” British Journal of Dermatology, vol. 114, no. 6, pp. 651–659, 1986.
[30]  C. W. Lee, “Prevalences of subacute cutaneous lupus erythematosus and epidermolysis bullosa acquisita among Korean/Oriental populations,” Dermatology, vol. 197, no. 2, article 187, 1998.
[31]  Y. Endo, A. Tamura, O. Ishikawa, Y. Miyachi, and T. Hashimoto, “Psoriasis vulgaris coexistent with epidermolysis bullosa acquisita,” British Journal of Dermatology, vol. 137, no. 5, pp. 783–786, 1997.
[32]  S. D. Morris, R. Mallipeddi, N. Oyama et al., “Psoriasis bullosa acquisita,” Clinical and Experimental Dermatology, vol. 27, no. 8, pp. 665–669, 2002.
[33]  D. Hoshina, D. Sawamura, T. Nomura et al., “Epidermolysis bullosa acquisita associated with psoriasis vulgaris,” Clinical and Experimental Dermatology, vol. 32, no. 5, pp. 516–518, 2007.
[34]  R. Kabashima, R. Hino, T. Bito et al., “Epidermolysis bullosa acquisita associated with psoriasis,” Acta Dermato-Venereologica, vol. 90, no. 3, pp. 314–316, 2010.
[35]  F. Sherry-Dottridge, “Case for diagnosis: acquired epidermatolysis bullosa?” Proceedings of the Royal Society of Medicine, vol. 55, article 409, 1962.
[36]  B. Labeille, J.-L. Gineston, J.-P. Denoeux, and J.-P. Capron, “Epidermolysis bullosa acquisita and Crohn's disease. A case report with immunological and electron microscopic studies,” Archives of Internal Medicine, vol. 148, no. 6, pp. 1457–1459, 1988.
[37]  B. Raab, D. F. Fretzin, and D. M. Bronson, “Epidermolysis bullosa acquisita and inflammatory bowel disease,” Journal of the American Medical Association, vol. 250, no. 13, pp. 1746–1748, 1983.
[38]  S. Schattenkirchner, M. Lémann, C. Prost et al., “Localized epidermolysis bullosa acquisita of the esophagus in a patient with Crohn's disease,” American Journal of Gastroenterology, vol. 91, no. 8, pp. 1657–1659, 1996.
[39]  J. K. Livden, R. Nilsen, S. Thunold, and H. Schjonsby, “Epidermolysis bullosa acquisita and Crohn's disease,” Acta Dermato-Venereologica, vol. 58, no. 3, pp. 241–244, 1978.
[40]  B. R. Hughes and J. Horne, “Epidermolysis bullosa acquisita and total ulcerative colitis,” Journal of the Royal Society of Medicine, vol. 81, no. 8, pp. 473–475, 1988.
[41]  M. Chen, E. A. O'Toole, J. Sanghavi et al., “The epidermolysis bullosa acquisita antigen (type VII collagen) is present in human colon and patients with Crohn's disease have autoantibodies to type VII collagen,” Journal of Investigative Dermatology, vol. 118, no. 6, pp. 1059–1064, 2002.
[42]  G. J. Oostingh, C. Sitaru, D. Zillikens, A. Kromminga, and H. Lührs, “Subclass distribution of type VII collagen-specific autoantibodies in patients with inflammatory bowel disease,” Journal of Dermatological Science, vol. 37, no. 3, pp. 182–184, 2005.
[43]  E. Licarete, S. Ganz, M. Recknagel et al., “Prevalence of collagen VII-specific autoantibodies in patients with autoimmune and inflammatory diseases,” BMC Immunology, vol. 13, article 16, 2012.
[44]  C. Sitaru, S. Mihai, C. Otto et al., “Induction of dermal-epidermal separation in mice by passive transfer of antibodies specific to type VII collagen,” Journal of Clinical Investigation, vol. 115, no. 4, pp. 870–878, 2005.
[45]  C. Sitaru, M. T. Chiriac, S. Mihai et al., “Induction of complement-fixing autoantibodies against type VII collagen results in subepidermal blistering in mice,” Journal of Immunology, vol. 177, no. 5, pp. 3461–3468, 2006.
[46]  M. Kasperkiewicz, M. Hirose, A. Recke, E. Schmidt, D. Zillikens, and R. J. Ludwig, “Clearance rates of circulating and tissue-bound autoantibodies to type VII collagen in experimental epidermolysis bullosa acquisita,” British Journal of Dermatology, vol. 162, no. 5, pp. 1064–1070, 2010.
[47]  P. Bernard, L. Vaillant, B. Labeille et al., “Incidence and distribution of subepidermal autoimmune bullous skin diseases in three French regions. Bullous Diseases French Study Group,” Archives of Dermatology, vol. 131, no. 1, pp. 48–52, 1995.
[48]  S. N. Wong and S. H. Chua, “Spectrum of subepidermal immunobullous disorders seen at the National Skin Centre, Singapore: a 2-year review,” British Journal of Dermatology, vol. 147, no. 3, pp. 476–480, 2002.
[49]  F. Bertram, E.-B. Br?cker, D. Zillikens, and E. Schmidt, “Prospective analysis of the incidence of autoimmune bullous disorders in Lower Franconia, Germany,” Journal of the German Society of Dermatology, vol. 7, no. 5, pp. 434–440, 2009.
[50]  B. Yang, C. Wang, N. Wang et al., “Childhood epidermolysis bullosa acquisita: report of a Chinese case,” Pediatric Dermatology, vol. 29, pp. 614–617, 2012.
[51]  F. Bordier-Lamy, C. Eschard, M. Coste et al., “Epidermolysis bullosa acquisita of childhood,” Annales de Dermatologie et de Venereologie, vol. 136, no. 6-7, pp. 513–517, 2009.
[52]  J. R. Stanley and M. Amagai, “Pemphigus, bullous impetigo, and the staphylococcal scalded-skin syndrome,” New England Journal of Medicine, vol. 355, no. 17, pp. 1800–1810, 2006.
[53]  D. T. Woodley, R. E. Burgeson, G. Lunstrum, L. Bruckner-Tuderman, M. J. Reese, and R. A. Briggaman, “Epidermolysis bullosa acquisita antigen is the globular carboxyl terminus of type VII procollagen,” Journal of Clinical Investigation, vol. 81, no. 3, pp. 683–687, 1988.
[54]  D. T. Woodley, R. A. Briggaman, and E. J. O'Keefe, “Identification of the skin basement-membrane autoantigen in epidermolysis bullosa acquisita,” New England Journal of Medicine, vol. 310, no. 16, pp. 1007–1013, 1984.
[55]  J.-C. Lapiere, D. T. Woodley, M. G. Parente et al., “Epitope mapping of type VII collagen. Identification of discrete peptide sequences recognized by sera from patients with acquired epidermolysis bullosa,” Journal of Clinical Investigation, vol. 92, no. 4, pp. 1831–1839, 1993.
[56]  W. R. Gammon, D. F. Murrell, M. W. Jenison et al., “Autoantibodies to type VII collagen recognize epitopes in a fibronectin-like region of the noncollagenous (NC1) domain,” Journal of Investigative Dermatology, vol. 100, no. 5, pp. 618–622, 1993.
[57]  M. Chen, A. Doostan, P. Bandyopadhyay et al., “The cartilage matrix protein subdomain of type VII collagen is pathogenic for epidermolysis bullosa acquisita,” American Journal of Pathology, vol. 170, no. 6, pp. 2009–2018, 2007.
[58]  N. Ishii, M. Yoshida, A. Ishida-Yamamoto et al., “Some epidermolysis bullosa acquisita sera react with epitopes within the triple-helical collagenous domain as indicated by immunoelectron microscopy,” British Journal of Dermatology, vol. 160, no. 5, pp. 1090–1093, 2009.
[59]  N. Ishii, M. Yoshida, Y. Hisamatsu et al., “Epidermolysis bullosa acquisita sera react with distinct epitopes on the NC1 and NC2 domains of type VII collagen: study using immunoblotting of domain-specific recombinant proteins and postembedding immunoelectron microscopy,” British Journal of Dermatology, vol. 150, no. 5, pp. 843–851, 2004.
[60]  C. Sitaru, A. Kromminga, T. Hashimoto, E. B. Br?cker, and D. Zillikens, “Autoantibodies to type VII collagen mediate Fcγ-dependent neutrophil activation and induce dermal-epidermal separation in cryosections of human skin,” American Journal of Pathology, vol. 161, no. 1, pp. 301–311, 2002.
[61]  S. Kulkarni, C. Sitaru, Z. Jakus et al., “PI3Kβ plays a critical role in neutrophil activation by immune complexes,” Science Signaling, vol. 4, no. 168, article ra23, 2011.
[62]  A. Recke, C. Sitaru, G. Vidarsson et al., “Pathogenicity of IgG subclass autoantibodies to type VII collagen: induction of dermal-epidermal separation,” Journal of Autoimmunity, vol. 34, no. 4, pp. 435–444, 2010.
[63]  D. T. Woodley, C. Chang, P. Saadat, R. Ram, Z. Liu, and M. Chen, “Evidence that anti-type VII collagen antibodies are pathogenic and responsible for the clinical, histological, and immunological features of epidermolysis bullosa acquisita,” Journal of Investigative Dermatology, vol. 124, no. 5, pp. 958–964, 2005.
[64]  D. T. Woodley, R. Ram, A. Doostan et al., “Induction of epidermolysis bullosa acquisita in mice by passive transfer of autoantibodies from patients,” Journal of Investigative Dermatology, vol. 126, no. 6, pp. 1323–1330, 2006.
[65]  X. Wang, R. Gupta, A. Garlapati, J. Cogan, D. Woodley, and M. Chen, “Type IV collagen binding-site within type VII collagen is a pathogenic epitope for EBA autoantibodies,” Journal of Investigative Dermatology, vol. 131, p. S7, 2011.
[66]  H. Iwata, S. Leinweber, U. Samavedam et al., “Antibodies to the von Willebrand Factor A domain of type VII collagen induce strain-dependent subepidermal blistering in mice,” Experimental Dermatology, vol. 21, article e31, 2012.
[67]  A. Vorobyev, A. Recke, J. J. Buijsrogge et al., “Human type VII collagen harbors multiple pathogenically relevant epitopes,” Journal of Investigative Dermatology, vol. 131, p. S19, 2011.
[68]  R. J. Ludwig, A. Recke, K. Bieber et al., “Generation of antibodies of distinct subclasses and specificity is linked to H2s in an active mouse model of epidermolysis bullosa acquisita,” Journal of Investigative Dermatology, vol. 131, no. 1, pp. 167–176, 2011.
[69]  C. M. Hammers, K. Bieber, K. Kalies et al., “Complement-fixing anti-type VII collagen antibodies are induced in Th1-polarized lymph nodes of epidermolysis bullosa acquisita-susceptible mice,” Journal of Immunology, vol. 187, no. 10, pp. 5043–5050, 2011.
[70]  S. Leineweber, S. Sch?nig, and K. Seeger, “Insight into interactions of the von-Willebrand-factor-A-like domain 2 with the FNIII-like domain 9 of collagen VII by NMR and SPR,” FEBS Letters, vol. 585, no. 12, pp. 1748–1752, 2011.
[71]  M. G. Parente, L. C. Chung, J. Ryynanen et al., “Human type VII collagen: cDNA cloning and chromosomal mapping of the gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 16, pp. 6931–6935, 1991.
[72]  H. Wegener, S. Leineweber, and K. Seeger, “The vWFA2 domain of type VII collagen is responsible for collagen binding,” Biochemical and Biophysical Research Communications, vol. 430, pp. 449–453, 2013.
[73]  X. Yu, K. Holdorf, B. Kasper, D. Zillikens, R. J. Ludwig, and F. Petersen, “FcγRIIA and FcγRIIIB are required for autoantibody-induced tissue damage in experimental human models of bullous pemphigoid,” Journal of Investigative Dermatology, vol. 130, no. 12, pp. 2841–2844, 2010.
[74]  W. R. Gammon, C. C. Merritt, and D. M. Lewis, “An in vitro model of immune complex-mediated basement membrane zone separation caused by pemphigoid antibodies, leukocytes, and complement,” Journal of Investigative Dermatology, vol. 78, no. 4, pp. 285–290, 1982.
[75]  C. Sitaru, E. Schmidt, S. Petermann, L. S. Munteanu, E.-B. Br?cker, and D. Zillikens, “Autoantibodies to bullous pemphigoid antigen 180 induce dermal-epidermal separation in cryosections of human skin,” Journal of Investigative Dermatology, vol. 118, no. 4, pp. 664–671, 2002.
[76]  H. Umemoto, M. Akiyama, T. Domon et al., “Type VII collagen deficiency causes defective tooth enamel formation due to poor differentiation of ameloblasts,” The American Journal of Pathology, vol. 181, pp. 1659–1671, 2012.
[77]  R. J. Ludwig, S. Müller, A. D. C. Marques et al., “Identification of quantitative trait loci in experimental epidermolysis bullosa acquisita,” Journal of Investigative Dermatology, vol. 132, no. 5, pp. 1409–1415, 2012.
[78]  K. Bieber, S. Sun, N. Ishii et al., “Animal models for autoimmune bullous dermatoses,” Experimental Dermatology, vol. 19, no. 1, pp. 2–11, 2010.
[79]  R. J. Ludwig, “Model systems duplicating epidermolysis bullosa acquisita: a methodological review,” Autoimmunity, vol. 45, no. 1, pp. 102–110, 2012.
[80]  W. R. Gammon, E. R. Heise, W. A. Burke, J.-D. Fine, D. T. Woodley, and R. A. Briggaman, “Increased frequency of HLA-DR2 in patients with autoantibodies to epidermolysis bullosa acquisita antigen: evidence that the expression of autoimmunity to type VII collagen is HLA class II allele associated,” Journal of Investigative Dermatology, vol. 91, no. 3, pp. 228–232, 1988.
[81]  M. H. Noe, M. Chen, D. T. Woodley, and J. A. Fairley, “Familial epidermolysis bullosa acquisita,” Dermatology Online Journal, vol. 14, no. 12, article 2, 2008.
[82]  F. Asghari, B. Fitzner, S.-A. Holzhüter et al., “Identification of quantitative trait loci for murine autoimmune pancreatitis,” Journal of Medical Genetics, vol. 48, no. 8, pp. 557–562, 2011.
[83]  A. G. Sitaru, A. Sesarman, S. Mihai et al., “T cells are required for the production of blister-inducing autoantibodies in experimental epidermolysis bullosa acquisita,” Journal of Immunology, vol. 184, no. 3, pp. 1596–1603, 2010.
[84]  M. Kasperkiewicz, R. Müller, R. Manz et al., “Heat-shock protein 90 inhibition in autoimmunity to type VII collagen: evidence that nonmalignant plasma cells are not therapeutic targets,” Blood, vol. 117, no. 23, pp. 6135–6142, 2011.
[85]  M. Amagai, K. Tsunoda, H. Suzuki, K. Nishifuji, S. Koyasu, and T. Nishikawa, “Use of autoantigen-knockout mice in developing an active autoimmune disease model for pemphigus,” Journal of Clinical Investigation, vol. 105, no. 5, pp. 625–631, 2000.
[86]  K. Tsunoda, T. Ota, H. Suzuki et al., “Pathogenic autoantibody production requires loss of tolerance against desmoglein 3 in both T and B cells in experimental pemphigus vulgaris,” European Journal of Immunology, vol. 32, pp. 627–633, 2002.
[87]  H. Ujiie, A. Shibaki, W. Nishie et al., “Noncollagenous 16A domain of type XVII collagen-reactive CD4+ T cells play a pivotal role in the development of active disease in experimental bullous pemphigoid model,” Clinical Immunology, vol. 142, no. 2, pp. 167–175, 2012.
[88]  H. Ujiie, A. Shibaki, W. Nishie et al., “A novel active mouse model for bullous pemphigoid targeting humanized pathogenic antigen,” Journal of Immunology, vol. 184, no. 4, pp. 2166–2174, 2010.
[89]  H. Ujiie and H. Shimizu, “Evidence for pathogenicity of autoreactive T cells in autoimmune bullous diseases shown by animal disease models,” Experimental Dermatology, vol. 21, pp. 901–905, 2012.
[90]  A. Giménez Ortiz and J. Montalar Salcedo, “Heat shock proteins as targets in oncology,” Clinical and Translational Oncology, vol. 12, no. 3, pp. 166–173, 2010.
[91]  N. Colliou, D. Picard, F. Caillot et al., “Long-term remissions of severe pemphigus after rituximab therapy are associated with prolonged failure of desmoglein B cell response,” Science Translational Medicine, vol. 5, article 175ra30, 2013.
[92]  R. Müller, C. Dahler, C. M?bs et al., “T and B cells target identical regions of the non-collagenous domain 1 of type VII collagen in epidermolysis bullosa acquisita,” Clinical Immunology, vol. 135, no. 1, pp. 99–107, 2010.
[93]  N. Li, M. Zhao, J. Hilario-Vargas et al., “Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3440–3450, 2005.
[94]  A. Sesarman, A. G. Sitaru, F. Olaru, D. Zillikens, and C. Sitaru, “Neonatal Fc receptor deficiency protects from tissue injury in experimental epidermolysis bullosa acquisita,” Journal of Molecular Medicine, vol. 86, no. 8, pp. 951–959, 2008.
[95]  H. Ji, D. Gauguier, K. Ohmura et al., “Genetic influences on the end-stage effector phase of arthritis,” Journal of Experimental Medicine, vol. 194, no. 3, pp. 321–330, 2001.
[96]  J. Textor, A. Peixoto, S. E. Henrickson, M. Sinn, U. H. von Andrian, and J. Westermann, “Defining the quantitative limits of intravital two-photon lymphocyte tracking,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 30, pp. 12401–12406, 2011.
[97]  J. Lohi, I. Leivo, T. Tani et al., “Laminins, tenascin and type VII collagen in colorectal mucosa,” Histochemical Journal, vol. 28, no. 6, pp. 431–440, 1996.
[98]  I. Leivo, T. Tani, L. Laitinen et al., “Anchoring complex components laminin-5 and type VII collagen in intestine: association with migrating and differentiating enterocytes,” Journal of Histochemistry and Cytochemistry, vol. 44, no. 11, pp. 1267–1277, 1996.
[99]  R. H. W. Wetzels, H. C. M. Robben, I. M. Leigh, H. E. Schaafsma, G. P. Vooijs, and F. C. S. Ramaekers, “Distribution patterns of type VII collagen in normal and malignant human tissues,” American Journal of Pathology, vol. 139, no. 2, pp. 451–459, 1991.
[100]  H. Iwata, N. Kamio, Y. Aoyama et al., “IgG from patients with bullous pemphigoid depletes cultured keratinocytes of the 180-kDa bullous pemphigoid antigen (type XVII collagen) and weakens cell attachment,” Journal of Investigative Dermatology, vol. 129, no. 4, pp. 919–926, 2009.
[101]  K. Natsuga, W. Nishie, S. Shinkuma et al., “Antibodies to pathogenic epitopes on type XVII collagen cause skin Ffragility in a complement-dependent and -independent manner,” The Journal of Immunology, vol. 188, no. 11, pp. 5792–5799, 2012.
[102]  H. Iwata and Y. Kitajima, “Bullous pemphigoid: role of complement and mechanisms for blister formation within the lamina lucida,” Experimental Dermatology, vol. 22, 6, pp. 381–385, 2013.
[103]  D. Villone, A. Fritsch, M. Koch, L. Bruckner-Tuderman, U. Hansen, and P. Bruckner, “Supramolecular interactions in the dermo-epidermal junction zone: anchoring fibril-collagen VII tightly binds to banded collagen fibrils,” Journal of Biological Chemistry, vol. 283, no. 36, pp. 24506–24513, 2008.
[104]  A. Sesarman, S. Mihai, M. T. Chiriac et al., “Binding of avian IgY to type VII collagen does not activate complement and leucocytes and fails to induce subepidermal blistering in mice,” British Journal of Dermatology, vol. 158, no. 3, pp. 463–471, 2008.
[105]  G. Lauc, J. E. Huffman, M. Pucic et al., “Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers,” PLOS Genetics, vol. 9, Article ID e1003225, 2013.
[106]  A. Ercan, M. G. Barnes, M. Hazen et al., “Multiple juvenile idiopathic arthritis subtypes demonstrate proinflammatory IgG glycosylation,” Arthritis & Rheumatism, vol. 64, pp. 3025–3033, 2012.
[107]  M. Collin and A. Olsén, “EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG,” The EMBO Journal, vol. 20, no. 12, pp. 3046–3055, 2001.
[108]  K. S. Nandakumar, M. Collin, A. Olsén et al., “Endoglycosidase treatment abrogates IgG arthritogenicity: importance of IgG glycosylation in arthritis,” European Journal of Immunology, vol. 37, no. 10, pp. 2973–2982, 2007.
[109]  H. Albert, M. Collin, D. Dudziak, J. V. Ravetch, and F. Nimmerjahn, “In vivo enzymatic modulation of IgG glycosylation inhibits autoimmune disease in an IgG subclass-dependent manner,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 39, pp. 15005–15009, 2008.
[110]  M. M. van Timmeren, B. S. van der Veen, C. A. Stegeman et al., “IgG glycan hydrolysis attenuates ANCA-mediated glomerulonephritis,” Journal of the American Society of Nephrology, vol. 21, no. 7, pp. 1103–1114, 2010.
[111]  R. Yang, M. A. Otten, T. Hellmark et al., “Successful treatment of experimental glomerulonephritis with IdeS and EndoS, IgG-degrading streptococcal enzymes,” Nephrology Dialysis Transplantation, vol. 25, no. 8, pp. 2479–2486, 2010.
[112]  M. Allhorn, J. G. Brice?o, L. Baudino et al., “The IgG-specific endoglycosidase EndoS inhibits both cellular and complement-mediated autoimmune hemolysis,” Blood, vol. 115, no. 24, pp. 5080–5088, 2010.
[113]  M. Hirose, K. Vafia, K. Kalies et al., “Enzymatic autoantibody glycan hydrolysis alleviates autoimmunity against type VII collagen,” Journal of Autoimmunity, vol. 39, no. 4, pp. 304–314, 2012.
[114]  M. Benkhoucha, N. Molnarfi, M. L. Santiago-Raber et al., “IgG glycan hydrolysis by EndoS inhibits experimental autoimmune encephalomyelitis,” J Neuroinflammation, vol. 9, article 209, 2012.
[115]  R. J. Ludwig and E. Schmidt, “Cytokines in autoimmune bullous skin diseases. Epiphenomena or contribution to pathogenesis?” Giornale Italiano di Dermatologia e Venereologia, vol. 144, no. 4, pp. 339–349, 2009.
[116]  J. B. Kuemmerle-Deschner, P. N. Tyrrell, I. Koetter et al., “Efficacy and safety of anakinra therapy in pediatric and adult patients with the autoinflammatory Muckle-Wells syndrome,” Arthritis & Rheumatism, vol. 63, no. 3, pp. 840–849, 2011.
[117]  D. J. Lovell, N. Ruperto, S. Goodman et al., “Adalimumab with or without methotrexate in juvenile rheumatoid arthritis,” New England Journal of Medicine, vol. 359, no. 8, pp. 810–820, 2008.
[118]  M. J. Elliott, R. N. Maini, M. Feldmann et al., “Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor α (cA2) versus placebo in rheumatoid arthritis,” The Lancet, vol. 344, no. 8930, pp. 1105–1110, 1994.
[119]  P. J. Mease, B. S. Goffe, J. Metz, A. Vanderstoep, B. Finck, and D. J. Bürge, “Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial,” The Lancet, vol. 356, no. 9227, pp. 385–390, 2000.
[120]  W. J. Sandborn, P. Rutgeerts, R. Enns et al., “Adalimumab induction therapy for Crohn disease previously treated with infliximab: a randomized trial,” Annals of Internal Medicine, vol. 146, no. 12, pp. 829–838, 2007.
[121]  H. John, A. Whallett, and M. Quinlan, “Successful biologic treatment of ocular mucous membrane pemphigoid with anti-TNF-α,” Eye, vol. 21, no. 11, pp. 1434–1435, 2007.
[122]  J. S. Kennedy, R. L. Devillez, and J. S. Henning, “Recalcitrant cicatricial pemphigoid treated with the anti-TNF-alpha agent etanercept,” Journal of Drugs in Dermatology, vol. 9, no. 1, pp. 68–70, 2010.
[123]  U. K. Samavedam, J. Scheller, Y. Gupta et al., “Recombinant IL-6 treatment protects mice from organ specific autoimmune disease by IL-6 classical signalling-dependent IL-1ra induction,” Journal of Autoimmunity, vol. 40, pp. 74–85, 2013.
[124]  M. Kasperkiewicz, F. Nimmerjahn, S. Wende et al., “Genetic identification and functional validation of FcγRIV as key molecule in autoantibody-induced tissue injury,” Journal of Pathology, vol. 228, no. 1, pp. 8–19, 2012.
[125]  R. J. Ludwig and D. Zillikens, “Pathogenesis of epidermolysis bullosa acquisita,” Dermatologic Clinics, vol. 29, no. 3, pp. 493–501, 2011.
[126]  M. T. Chiriac, J. Roesler, A. Sindrilaru, K. Scharffetter-Kochanek, D. Zillikens, and C. Sitaru, “NADPH oxidase is required for neutrophil-dependent autoantibody-induced tissue damage,” Journal of Pathology, vol. 212, no. 1, pp. 56–65, 2007.
[127]  M. Hirose, L. Brandolini, D. Zimmer et al., “The allosteric CXCR1/2 inhibitor DF2156A improves experimental epidermolysis bullosa acquisita,” Journal of Genetic Syndromes & Gene Therapy, 2013.
[128]  U. Samavedam, S. Mueller, A. Recke, E. Schmidt, D. Zillikens, and R. J. Ludwig, “A crucial role of granulocyte-macrophage colony-stimulating factor in the pathogenesis of experimental epidermolysis bullosa acquisita,” Experimental Dermatology, vol. 21, article e11, 2012.
[129]  S. Mihai, M. T. Chiriac, K. Takahashi et al., “The alternative pathway of complement activation is critical for blister induction in experimental epidermolysis bullosa acquisita,” Journal of Immunology, vol. 178, no. 10, pp. 6514–6521, 2007.
[130]  C. M. Karsten, M. K. Pandey, J. Figge et al., “Galactosylated IgG1 links FcγRIIB and Dectin-1 to blockcomplement-mediated inflammation,” Nature Medicine, vol. 18, no. 9, pp. 1401–1406, 2012.
[131]  L. Hellberg, K. Holdorf, M. H?nsel et al., “Methylprednisolone blocks autoantibody-induced tissue damage through inhibition of neutrophil activation,” Journal of Investigative Dermatology, 2013.
[132]  I. Shimanovich, S. Mihai, G. J. Oostingh et al., “Granulocyte-derived elastase and gelatinase B are required for dermal-epidermal separation induced by autoantibodies from patients with epidermolysis bullosa acquisita and bullous pemphigoid,” Journal of Pathology, vol. 204, no. 5, pp. 519–527, 2004.
[133]  Z. Kopecki, R. M. Arkell, X. L. Strudwick et al., “Overexpression of the Flii gene increases dermal-epidermal blistering in an autoimmune ColVII mouse model of epidermolysis bullosa acquisita,” Journal of Pathology, vol. 225, no. 3, pp. 401–413, 2011.
[134]  Z. Kopecki, N. Ruzehaji, C. Turner et al., “Topically applied Flightless I neutralising antibodies improve healing of blistered skin in a murine model of epidermolysis bullosa acquisita,” Journal of Investigative Dermatology, vol. 133, no. 4, pp. 1008–1016, 2013.
[135]  A. D. Whetton and T. M. Dexter, “Myeloid haemopoietic growth factors,” Biochimica et Biophysica Acta, vol. 989, no. 2, pp. 111–132, 1989.
[136]  J. D. Griffin, S. A. Cannistra, R. Sullivan, G. D. Demetri, T. J. Ernst, and Y. Kanakura, “The biology of GM-CSF: regulation of production and interaction with its receptor,” International Journal of Cell Cloning, vol. 8, no. 1, pp. 35–45, 1990.
[137]  J. R. Korzenik, B. K. Dieckgraefe, J. F. Valentine, D. F. Hausman, and M. J. Gilbert, “Sargramostim for active Crohn's disease,” New England Journal of Medicine, vol. 352, no. 21, pp. 2193–2201, 2005.
[138]  S. K. Sainathan, E. M. Hanna, Q. Gong et al., “Granulocyte macrophage colony-stimulating factor ameliorates DSS-induced experimental colitis,” Inflammatory Bowel Diseases, vol. 14, no. 1, pp. 88–99, 2008.
[139]  S. Kondo, S. Pastore, G. M. Shivji, R. C. McKenzie, and D. N. Sauder, “Characterization of epidermal cytokine profiles in sensitization and elicitation phases of allergic contact dermatitis as well as irritant contact dermatitis in mouse skin,” Lymphokine and Cytokine Research, vol. 13, no. 6, pp. 367–375, 1994.
[140]  S. Gillessen, N. Mach, C. Small, M. Mihm, and G. Dranoff, “Overlapping roles for granulocyte-macrophage colony-stimulating factor and interleukin-3 in eosinophil homeostasis and contact hypersensitivity,” Blood, vol. 97, no. 4, pp. 922–928, 2001.
[141]  I. K. Campbell, A. Bendele, D. A. Smith, and J. A. Hamilton, “Granulocyte-macrophage colony stimulating factor exacerbates collagen induced arthritis in mice,” Annals of the Rheumatic Diseases, vol. 56, no. 6, pp. 364–368, 1997.
[142]  A. D. Cook, E. L. Braine, I. K. Campbell, M. J. Rich, and J. A. Hamilton, “Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease,” Arthritis Research, vol. 3, no. 5, pp. 293–298, 2001.
[143]  C. Plater-Zyberk, L. A. B. Joosten, M. M. A. Helsen, J. Hepp, P. A. Baeuerle, and W. B. van den Berg, “GM-CSF neutralisation suppresses inflammation and protects cartilage in acute streptococcal cell wall arthritis of mice,” Annals of the Rheumatic Diseases, vol. 66, no. 4, pp. 452–457, 2007.
[144]  L. Codarri, G. Gyülvészii, V. Tosevski et al., “RORγ3t drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation,” Nature Immunology, vol. 12, no. 6, pp. 560–567, 2011.
[145]  M. Sch?n, D. Denzer, R. C. Kubitza, T. Ruzicka, and M. P. Sch?n, “Critical role of neutrophils for the generation of psoriasiform skin lesions in flaky skin mice,” Journal of Investigative Dermatology, vol. 114, no. 5, pp. 976–983, 2000.
[146]  A. R. Kitching, X. R. Huang, A. L. Turner, P. G. Tipping, A. R. Dunn, and S. R. Holdsworth, “The requirement for granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in leukocyte-mediated immune glomerular injury,” Journal of the American Society of Nephrology, vol. 13, no. 2, pp. 350–358, 2002.
[147]  F. A. Houssiau, J.-P. Devogelaer, J. van Damme, C. Nagant de Deuxchaisnes, and J. van Snick, “Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides,” Arthritis & Rheumatism, vol. 31, no. 6, pp. 784–788, 1988.
[148]  Y. R. Mahida, L. Kurlac, A. Gallagher, and C. J. Hawkey, “High circulating concentrations of interleukin-6 in active Crohn's disease but not ulcerative colitis,” Gut, vol. 32, no. 12, pp. 1531–1534, 1991.
[149]  A. Yokoyama, N. Kohno, S. Fujino et al., “Circulating interleukin-6 levels in patients with bronchial asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 151, no. 5, pp. 1354–1358, 1995.
[150]  R. M. Grossman, J. Krueger, D. Yourish et al., “Interleukin 6 is expressed in high levels of psoriatic skin and stimulates proliferation of cultured human keratinocytes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 16, pp. 6367–6371, 1989.
[151]  U. Eriksson, M. O. Kurrer, N. Schmitz et al., “Interleukin-6-deficient mice resist development of autoimmune myocarditis associated with impaired upregulation of complement C3,” Circulation, vol. 107, no. 2, pp. 320–325, 2003.
[152]  S. Ohshima, Y. Saeki, T. Mima et al., “Interleukin 6 plays a key role in the development of antigen-induced arthritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 14, pp. 8222–8226, 1998.
[153]  T. Alonzi, E. Fattori, D. Lazzaro et al., “Interleukin 6 is required for the development of collagen-induced arthritis,” Journal of Experimental Medicine, vol. 187, no. 4, pp. 461–468, 1998.
[154]  E. B. Samoilova, J. L. Horton, B. Hilliard, T.-S. T. Liu, and Y. Chen, “IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells,” Journal of Immunology, vol. 161, no. 12, pp. 6480–6486, 1998.
[155]  R. N. Maini, P. C. Taylor, J. Szechinski et al., “Double-blind randomized controlled clinical trial of the interleukin-6 receptor antagonist, tocilizumab, in European patients with rheumatoid arthritis who had an incomplete response to methotrexate,” Arthritis & Rheumatism, vol. 54, no. 9, pp. 2817–2829, 2006.
[156]  J. Scheller, A. Chalaris, D. Schmidt-Arras, and S. Rose-John, “The pro- and anti-inflammatory properties of the cytokine interleukin-6,” Biochimica et Biophysica Acta, vol. 1813, no. 5, pp. 878–888, 2011.
[157]  M. A. Nowell, P. J. Richards, S. Horiuchi et al., “Soluble IL-6 receptor governs IL-6 activity in experimental arthritis: blockade of arthritis severity by soluble Glycoprotein 130,” Journal of Immunology, vol. 171, no. 6, pp. 3202–3209, 2003.
[158]  M. A. Nowell, A. S. Williams, S. A. Carty et al., “Therapeutic targeting of IL-6 trans signaling counteracts STAT3 control of experimental inflammatory arthritis,” Journal of Immunology, vol. 182, no. 1, pp. 613–622, 2009.
[159]  G. H. Waetzig and S. Rose-John, “Hitting a complex target: an update on interleukin-6 trans-signalling,” Expert Opinion on Therapeutic Targets, vol. 16, no. 2, pp. 225–236, 2012.
[160]  M. C. Poffenberger, N. Straka, N. El Warry, D. Fang, I. Shanina, and M. S. Horwitz, “Lack of IL-6 during coxsackievirus infection heightens the early immune response resulting in increased severity of chronic autoimmune myocarditis,” PLoS ONE, vol. 4, no. 7, article e6207, 2009.
[161]  Z. Xing, J. Gauldie, G. Cox et al., “IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses,” Journal of Clinical Investigation, vol. 101, no. 2, pp. 311–320, 1998.
[162]  S. Grivennikov, E. Karin, J. Terzic et al., “IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer,” Cancer Cell, vol. 15, no. 2, pp. 103–113, 2009.
[163]  J. O. Jin, X. Han, and Q. Yu, “Interleukin-6 induces the generation of IL-10-producing Tr1 cells and suppresses autoimmune tissue inflammation,” Journal of Autoimmunity, vol. 40, pp. 28–44, 2013.
[164]  A. Klos, A. J. Tenner, K.-O. Johswich, R. R. Ager, E. S. Reis, and J. K?hl, “The role of the anaphylatoxins in health and disease,” Molecular Immunology, vol. 46, no. 14, pp. 2753–2766, 2009.
[165]  Y. Wang, J. Kristan, L. Hao, C. S. Lenkoski, Y. Shen, and L. A. Matis, “A role for complement in antibody-mediated inflammation: C5-deficient DBA/1 mice are resistant to collagen-induced arthritis,” Journal of Immunology, vol. 164, no. 8, pp. 4340–4347, 2000.
[166]  X. Zhang and J. Kohl, “A complex role for complement in allergic asthma,” Expert Review of Clinical Immunology, vol. 6, no. 2, pp. 269–277, 2010.
[167]  Z. Liu, G. J. Giudice, S. J. Swartz et al., “The role of complement in experimental bullous pemphigoid,” Journal of Clinical Investigation, vol. 95, no. 4, pp. 1539–1544, 1995.
[168]  M. Botto, C. Dell'Agnola, A. E. Bygrave et al., “Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies,” Nature Genetics, vol. 19, no. 1, pp. 56–59, 1998.
[169]  K. Takahashi, J. Gordon, H. Liu et al., “Lack of mannose-binding lectin-A enhances survival in a mouse model of acute septic peritonitis,” Microbes and Infection, vol. 4, no. 8, pp. 773–784, 2002.
[170]  E. Kolaczkowska and P. Kubes, “Neutrophil recruitment and function in health and inflammation,” Nature Reviews Immunology, vol. 13, pp. 159–175, 2013.
[171]  J. R. Mora and U. H. von Andrian, “T-cell homing specificity and plasticity: new concepts and future challenges,” Trends in Immunology, vol. 27, no. 5, pp. 235–243, 2006.
[172]  H. H. Radeke, R. J. Ludwig, and W.-H. Boehnche, “Experimental approaches to lymphocyte migration in dermatology in vitro and in vivo,” Experimental Dermatology, vol. 14, no. 9, pp. 641–666, 2005.
[173]  M. P. Sch?n and R. J. Ludwig, “Lymphocyte trafficking to inflamed skin—molecular mechanisms and implications for therapeutic target molecules,” Expert Opinion on Therapeutic Targets, vol. 9, no. 2, pp. 225–243, 2005.
[174]  R. J. Ludwig, T. M. Zollner, S. Santoso et al., “Junctional adhesion molecules (JAM)-B and -C contribute to leukocyte extravasation to the skin and mediate cutaneous inflammation,” Journal of Investigative Dermatology, vol. 125, no. 5, pp. 969–976, 2005.
[175]  R. J. Ludwig, K. Hardt, M. Hatting et al., “Junctional adhesion molecule (JAM)-B supports lymphocyte rolling and adhesion through interaction with α4β1 integrin,” Immunology, vol. 128, no. 2, pp. 196–205, 2009.
[176]  M. Allhorn and M. Collin, “Sugar-free antibodies—the bacterial solution to autoimmunity?” Annals of the New York Academy of Sciences, vol. 1173, pp. 664–669, 2009.
[177]  F. Nimmerjahn and J. V. Ravetch, “Fcγ receptors as regulators of immune responses,” Nature Reviews Immunology, vol. 8, no. 1, pp. 34–47, 2008.
[178]  T. Yuasa, S. Kubo, T. Yoshino et al., “Deletion of Fcγ receptor IIB renders H-2b mice susceptible to collagen-induced arthritis,” Journal of Experimental Medicine, vol. 189, no. 1, pp. 187–194, 1999.
[179]  A. Nakamura, T. Yuasa, A. Ujike et al., “Fcγ receptor IIB-deficient mice develop goodpasture's syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease,” Journal of Experimental Medicine, vol. 191, no. 5, pp. 899–905, 2000.
[180]  M. Zhao, M. E. Trimbeger, N. Li, L. A. Diaz, S. D. Shapiro, and Z. Liu, “Role of FcRs in animal model of autoimmune bullous pemphigoid,” Journal of Immunology, vol. 177, no. 5, pp. 3398–3405, 2006.
[181]  N. Shushakova, J. Skokowa, J. Schulman et al., “C5a anaphylatoxin is a major regulator of activating versus inhibitory FcγRs in immune complex-induced lung disease,” Journal of Clinical Investigation, vol. 110, no. 12, pp. 1823–1830, 2002.
[182]  J. Godau, T. Heller, H. Hawlisch et al., “C5a initiates the inflammatory cascade in immune complex peritonitis,” Journal of Immunology, vol. 173, no. 5, pp. 3437–3445, 2004.
[183]  F. Kiefer, J. Brumell, N. Al-Alawi et al., “The Syk protein tyrosine kinase is essential for Fcγ/receptor signaling in macrophages and neutrophils,” Molecular and Cellular Biology, vol. 18, no. 7, pp. 4209–4220, 1998.
[184]  S. L. Tan, C. Liao, M. C. Lucas, C. Stevenson, and J. A. Demartino, “Targeting the SYK-BTK axis for the treatment of immunological and hematological disorders: recent progress and therapeutic perspectives,” Pharmacology & Therapeutics, vol. 138, pp. 294–309, 2013.
[185]  L. G. Rider, N. Hirasawa, F. Santini, and M. A. Beaven, “Activation of the mitogen-activated protein kinase cascade is suppressed by low concentrations of dexamethasone in mast cells,” Journal of Immunology, vol. 157, no. 6, pp. 2374–2380, 1996.
[186]  J. Chen, H. Tang, N. Hay, J. Xu, and R. D. Ye, “Akt isoforms differentially regulate neutrophil functions,” Blood, vol. 115, no. 21, pp. 4237–4246, 2010.
[187]  M. Faurschou and N. Borregaard, “Neutrophil granules and secretory vesicles in inflammation,” Microbes and Infection, vol. 5, no. 14, pp. 1317–1327, 2003.
[188]  J. W. Leiding and S. M. Holland, “Chronic Granulomatous Disease,” GeneReviews, 1993.
[189]  A. J. Cowin, D. H. Adams, X. L. Strudwick et al., “Flightless I deficiency enhances wound repair by increasing cell migration and proliferation,” Journal of Pathology, vol. 211, no. 5, pp. 572–581, 2007.
[190]  R. M. Vodegel, M. F. Jonkman, H. H. Pas, and M. C. J. M. De Jong, “U-serrated immunodeposition pattern differentiates type VII collagen targeting bullous diseases from other subepidermal bullous autoimmune diseases,” British Journal of Dermatology, vol. 151, no. 1, pp. 112–118, 2004.
[191]  J. B. Terra, J. M. Meijer, M. F. Jonkman, and G. F. Diercks, “The n- versus u-serration is a learnable criterion to differentiate pemphigoid from epidermolysis bullosa acquisita in direct immunofluorescence serration pattern analysis,” British Journal of Dermatology, 2013.
[192]  J. B. Terra, H. H. Pas, M. Hertl, F. G. Dikkers, N. Kamminga, and M. F. Jonkman, “Immunofluorescence serration pattern analysis as a diagnostic criterion in antilaminin-332 mucous membrane pemphigoid: immunopathological findings and clinical experience in 10 Dutch patients,” British Journal of Dermatology, vol. 165, no. 4, pp. 815–822, 2011.
[193]  M. Chen, L. S. Chan, X. Cai, E. A. O'Toole, J. C. Sample, and D. T. Woodley, “Development of an ELISA for rapid detection of anti-type VII collagen autoantibodies in epidermolysis bullosa acquisita,” Journal of Investigative Dermatology, vol. 108, no. 1, pp. 68–72, 1997.
[194]  M. A. Saleh, K. Ishii, Y.-J. Kim et al., “Development of NC1 and NC2 domains of Type VII collagen ELISA for the diagnosis and analysis of the time course of epidermolysis bullosa acquisita patients,” Journal of Dermatological Science, vol. 62, no. 3, pp. 169–175, 2011.
[195]  L. Komorowski, R. Müller, A. Vorobyev et al., “Sensitive and specific assays for routine serological diagnosis of epidermolysis bullosa acquisita,” Journal of the American Academy of Dermatology, vol. 68, pp. e89–3, 2012.
[196]  C. Nieboer, D. M. Boorsma, M. J. Woerdeman, and G. L. Kalsbeek, “Epidermolysis bullosa acquisita. Immunofluorescence, electron microscopic and immuno-electron microscopic studies in four patients,” British Journal of Dermatology, vol. 102, no. 4, pp. 383–392, 1980.
[197]  H. Yaoita, R. A. Briggaman, and T. J. Lawley, “Epidermolysis bullosa acquisita: ultrastructural and immunological studies,” Journal of Investigative Dermatology, vol. 76, no. 4, pp. 288–292, 1981.
[198]  F. Caux, “Epidermolysis bullosa acquisita,” Presse Medicale, vol. 39, no. 10, pp. 1081–1088, 2010.
[199]  M. C. J. M. de Jong, S. Bruins, K. Heeres et al., “Bullous pemphigoid and epidermolysis bullosa acquisita: differentiation by fluorescence overlay antigen mapping,” Archives of Dermatology, vol. 132, no. 2, pp. 151–157, 1996.
[200]  T. Kazama, Y. Yamamoto, T. Hashimoto, A. Komai, and M. Ito, “Application of confocal laser scanning microscopy to differential diagnosis of bullous pemphigoid and epidermolysis bullosa acquisita,” British Journal of Dermatology, vol. 138, no. 4, pp. 593–601, 1998.
[201]  G. Hundorfean, M. F. Neurath, and C. Sitaru, “Autoimmunity against type VII collagen in inflammatory bowel disease,” Journal of Cellular and Molecular Medicine, vol. 14, no. 10, pp. 2393–2403, 2010.
[202]  H. Reddy, A. R. Shipman, and F. Wojnarowska, “Epidermolysis bullosa acquisita and inflammatory bowel disease: a review of the literature,” Clinical and Experimental Dermatology, vol. 38, pp. 225–230, 2013.
[203]  L. Engineer and A. R. Ahmed, “Emerging treatment for epidermolysis bullosa acquisita,” Journal of the American Academy of Dermatology, vol. 44, no. 5, pp. 818–828, 2001.
[204]  J. H. Kim and S. C. Kim, “Epidermolysis bullosa acquisita,” Journal of the European Academy of Dermatology and Venereology, 2013.
[205]  S. M. Connolly and H. M. Sander, “Treatment of epidermolysis bullosa acquisita with cyclosporine,” Journal of the American Academy of Dermatology, vol. 16, no. 4, p. 890, 1987.
[206]  M. L. Khatri, M. Benghazeil, and M. Shafi, “Epidermolysis bullosa acquisita responsive to cyclosporin therapy,” Journal of the European Academy of Dermatology and Venereology, vol. 15, no. 2, pp. 182–184, 2001.
[207]  J. C. Maize Jr. and J. B. Cohen, “Cyclosporine controls epidermolysis bullosa acquisita co-occuring with acquired factor VIII deficiency,” International Journal of Dermatology, vol. 44, no. 8, pp. 692–694, 2005.
[208]  M. Megahed and K. Scharfletter-Kochanek, “Epidermolysis bullosa acquisita—successful treatment with colchicine,” Archives of Dermatological Research, vol. 286, no. 1, pp. 35–40, 1994.
[209]  B. B. Cunningham, T. T. T. Kirchmann, and D. Woodley, “Colchicine for epidermolysis bullosa acquisita,” Journal of the American Academy of Dermatology, vol. 34, no. 5, pp. 781–784, 1996.
[210]  K. P. Arora, B. Sachdeva, N. Singh, and S. N. Bhattacharya, “Remission of recalcitrant epidermolysis bullosa acquisita (EBA) with colchicine monotherapy,” Journal of Dermatology, vol. 32, no. 2, pp. 114–119, 2005.
[211]  N. Tanaka, T. Dainichi, B. Ohyama et al., “A case of epidermolysis bullosa acquisita with clinical features of Brunsting-Perry pemphigoid showing an excellent response to colchicine,” Journal of the American Academy of Dermatology, vol. 61, no. 4, pp. 715–719, 2009.
[212]  Y. Kiniwa, A. Ashida, A. Ohashi et al., “A case of epidermolysis bullosa acquisita associated with laryngeal stenosis,” Acta Dermato-Venereologica, vol. 92, no. 1, pp. 93–94, 2012.
[213]  G. Driessen and M. van der Burg, “Educational paper: primary antibody deficiencies,” European Journal of Pediatrics, vol. 170, no. 6, pp. 693–702, 2011.
[214]  D. B. Cines and V. S. Blanchette, “Medical progress: immune thrombocytopenic purpura,” New England Journal of Medicine, vol. 346, no. 13, pp. 995–1008, 2002.
[215]  N. Yuki, “Infectious origins of, and molecular mimicry in, Guillain-Barré and Fisher syndromes,” Lancet Infectious Diseases, vol. 1, no. 1, pp. 29–37, 2001.
[216]  D. Fergusson, B. Hutton, M. Sharma et al., “Use of intravenous immunoglobulin for treatment of neurologic conditions: a systematic review,” Transfusion, vol. 45, no. 10, pp. 1640–1657, 2005.
[217]  T. Kobayashi, T. Saji, T. Otani et al., “Efficacy of immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): a randomised, open-label, blinded-endpoints trial,” The Lancet, vol. 379, no. 9826, pp. 1613–1620, 2012.
[218]  M. Amagai, S. Ikeda, H. Shimizu et al., “A randomized double-blind trial of intravenous immunoglobulin for pemphigus,” Journal of the American Academy of Dermatology, vol. 60, no. 4, pp. 595–603, 2009.
[219]  N. Ishii, T. Hashimoto, D. Zillikens, and R. J. Ludwig, “High-dose intravenous immunoglobulin (IVIG) therapy in autoimmune skin blistering diseases,” Clinical Reviews in Allergy and Immunology, vol. 38, no. 2-3, pp. 186–195, 2010.
[220]  A. R. Ahmed and H. M. Gürcan, “Treatment of epidermolysis bullosa acquisita with intravenous immunoglobulin in patients non-responsive to conventional therapy: clinical outcome and post-treatment long-term follow-up,” Journal of the European Academy of Dermatology and Venereology, vol. 26, pp. 1074–1083, 2012.
[221]  A. P. Hughes and J. P. Callen, “Epidermolysis bullosa acquisita responsive to dapsone therapy,” Journal of Cutaneous Medicine and Surgery, vol. 5, no. 5, pp. 397–399, 2001.
[222]  G. Kirtschig, D. Murrell, F. Wojnarowska, and N. Khumalo, “Interventions for mucous membrane pemphigoid and epidermolysis bullosa acquisita,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD004056, 2003.
[223]  P. Joly, H. Mouquet, J.-C. Roujeau et al., “A single cycle of rituximab for the treatment of severe pemphigus,” New England Journal of Medicine, vol. 357, no. 6, pp. 545–552, 2007.
[224]  M. Kasperkiewicz, I. Shimanovich, R. J. Ludwig, C. Rose, D. Zillikens, and E. Schmidt, “Rituximab for treatment-refractory pemphigus and pemphigoid: a case series of 17 patients,” Journal of the American Academy of Dermatology, vol. 65, no. 3, pp. 552–558, 2011.
[225]  S. K. McKinley, J. T. Huang, J. Tan, D. Kroshinsky, and S. Gellis, “A case of recalcitrant epidermolysis bullosa acquisita responsive to rituximab therapy,” Pediatric Dermatology, 2012.
[226]  J. H. Kim, S. E. Lee, and S.-C. Kim, “Successful treatment of epidermolysis bullosa acquisita with rituximab therapy,” Journal of Dermatology, vol. 39, no. 5, pp. 477–479, 2012.
[227]  C. Meissner, M. Hoefeld-Fegeler, R. Vetter et al., “Severe acral contractures and nail loss in a patient with mechano-bullous Epidermolysis bullosa acquisita,” European Journal of Dermatology, vol. 20, no. 4, pp. 543–544, 2010.
[228]  I. Kubisch, P. Diessenbacher, E. Schmidt, H. Gollnick, and M. Leverkus, “Premonitory epidermolysis bullosa acquisita mimicking eyelid dermatitis: successful treatment with rituximab and protein a immunoapheresis,” American Journal of Clinical Dermatology, vol. 11, no. 4, pp. 289–293, 2010.
[229]  M. Saha, T. Cutler, B. Bhogal, M. M. Black, and R. W. Groves, “Correspondence: refractory epidermolysis bullosa acquisita: successful treatment with rituximab,” Clinical and Experimental Dermatology, vol. 34, no. 8, pp. e979–e980, 2009.
[230]  A. Cavailhes, B. Balme, D. Gilbert, and F. Skowron, “Successful use of combined corticosteroids and rituximab in the treatment of recalcitrant epidermolysis bullosa acquisita,” Annales de Dermatologie et de Venereologie, vol. 136, no. 11, pp. 795–799, 2009.
[231]  P. Mercader, J. M. Rodenas, A. Pe?a, and J. M. Mascaro Jr., “Fatal Pseudomona pneumonia following rituximab therapy in a patient with epidermolysis bullosa acquisita,” Journal of the European Academy of Dermatology and Venereology, vol. 21, no. 8, pp. 1141–1142, 2007.
[232]  E. Sadler, B. Schafleitner, C. Lanschuetzer et al., “Treatment-resistant classical epidermolysis bullosa acquisita responding to rituximab,” British Journal of Dermatology, vol. 157, no. 2, pp. 417–419, 2007.
[233]  A. Niedermeier, R. Eming, M. Pfütze et al., “Clinical response of severe mechanobullous epidermolysis bullosa acquisita to combined treatment with immunoadsorption and rituximab (anti-CD20 monoclonal antibodies),” Archives of Dermatology, vol. 143, no. 2, pp. 192–198, 2007.
[234]  S. M. Crichlow, N. J. Mortimer, and K. E. Harman, “A successful therapeutic trial of rituximab in the treatment of a patient with recalcitrant, high-titre epidermolysis bullosa acquisita,” British Journal of Dermatology, vol. 156, no. 1, pp. 194–196, 2007.
[235]  E. Schmidt, S. Benoit, E.-B. Br?cker, D. Zillikens, and M. Goebeler, “Successful adjuvant treatment of recalcitrant epidermolysis bullosa acquisita with anti-CD20 antibody rituximab,” Archives of Dermatology, vol. 142, no. 2, pp. 147–150, 2006.
[236]  E. Schmidt and D. Zillikens, “Immunoadsorption in dermatology,” Archives of Dermatological Research, vol. 302, no. 4, pp. 241–253, 2010.
[237]  M. Furue, M. Iwata, and H.-I. Yoon, “Epidermolysis bullosa acquisita: clinical response to plasma exchange therapy and circulating anti-basement membrane zone antibody titer,” Journal of the American Academy of Dermatology, vol. 14, no. 5, pp. 873–878, 1986.
[238]  J. L. Miller, G. P. Stricklin, J. D. Fine, L. E. King, M. del Carmen Arzubiaga, and D. L. Ellis, “Remission of severe epidermolysis bullosa acquisita induced by extracorporeal photochemotherapy,” British Journal of Dermatology, vol. 133, no. 3, pp. 467–471, 1995.
[239]  K. B. Gordon, L. S. Chan, and D. T. Woodley, “Treatment of refractory epidermolysis bullosa acquisita with extracorporeal photochemotherapy,” British Journal of Dermatology, vol. 136, no. 3, pp. 415–420, 1997.
[240]  H. Sanli, B. N. Akay, E. Ayyildiz, R. Anadolu, and O. Ilhan, “Remission of severe autoimmune bullous disorders induced by long-term extracorporeal photochemotherapy,” Transfusion and Apheresis Science, vol. 43, no. 3, pp. 353–359, 2010.
[241]  B. Baroudjian, C. Le Roux-Villet, S. Brechignac et al., “Long-term efficacy of extracorporeal photochemotherapy in a patient with refractory epidermolysis bullosa acquisita,” European Journal of Dermatology, vol. 22, no. 6, pp. 795–797, 2012.
[242]  S. Z. Usmani and G. Chiosis, “HSP90 inhibitors as therapy for multiple myeloma,” Clinical Lymphoma, Myeloma and Leukemia, vol. 11, supplement 1, pp. S77–S81, 2011.
[243]  S. Pacey, R. H. Wilson, M. Walton et al., “A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors,” Clinical Cancer Research, vol. 17, no. 6, pp. 1561–1570, 2011.
[244]  ClinicalTrials.gov, “Clinical studies using teplizumab,” 2012.
[245]  ClinicalTrials.gov, “Clinical studies using otelixizumab,” 2012.
[246]  Y. H. Kim, M. Duvic, E. Obitz et al., “Clinical efficacy of zanolimumab (HuMax-CD4): two phase 2 studies in refractory cutaneous T-cell lymphoma,” Blood, vol. 109, no. 11, pp. 4655–4662, 2007.
[247]  B. W. van Oosten, M. Lai, S. Hodgkinson et al., “Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR- monitored phase II trial,” Neurology, vol. 49, no. 2, pp. 351–357, 1997.
[248]  A. Stronkhorst, S. Radema, S.-L. Yong et al., “CD4 antibody treatment in patients with active Crohn's disease: a phase 1 dose finding study,” Gut, vol. 40, no. 3, pp. 320–327, 1997.
[249]  D. Meyersburg, E. Schmidt, M. Kasperkiewicz, and D. Zillikens, “Immunoadsorption in dermatology,” Therapeutic Apheresis and Dialysis, vol. 16, pp. 311–320, 2012.
[250]  IA-PEM., 2013, https://drks-neu.uniklinik-freiburg.de/drks_web/.
[251]  Y. Nagatomo, A. Baba, H. Ito et al., “Specific immunoadsorption therapy using a tryptophan column in patients with refractory heart failure due to dilated cardiomyopathy,” Journal of Clinical Apheresis, vol. 26, no. 1, pp. 1–8, 2011.
[252]  P. Sondermann and U. Jacob, “Human Fcγ receptor IIb expressed in Escherichia coli reveals IgG binding capability,” Biological Chemistry, vol. 380, no. 6, pp. 717–721, 1999.
[253]  “Clinical trials using SM101,” 2012, http://clinicaltrials.gov/.
[254]  S. Werwitzke, D. Trick, P. Sondermann et al., “Treatment of lupus-prone NZB/NZW F1 mice with recombinant soluble Fcγ receptor II (CD32),” Annals of the Rheumatic Diseases, vol. 67, no. 2, pp. 154–161, 2008.
[255]  S. E. Magnusson, M. Andrén, K. E. Nilsson, P. Sondermann, U. Jacob, and S. Kleinau, “Amelioration of collagen-induced arthritis by human recombinant soluble FcγRIIb,” Clinical Immunology, vol. 127, no. 2, pp. 225–233, 2008.
[256]  N. Tubridy, P. O. Behan, R. Capildeo et al., “The effect of anti-α4 integrin antibody on brain lesion activity in MS,” Neurology, vol. 53, no. 3, pp. 466–472, 1999.
[257]  A. Langer-Gould, S. W. Atlas, A. J. Green, A. W. Bollen, and D. Pelletier, “Progressive multifocal leukoencephalopathy in a patient treated with natalizumab,” New England Journal of Medicine, vol. 353, no. 4, pp. 375–381, 2005.
[258]  J. M. Reichert, “Marketed therapeutic antibodies compendium,” MAbs, vol. 4, pp. 413–415, 2012.
[259]  M. Friedrich, D. Bock, S. Philipp et al., “Pan-selectin antagonism improves psoriasis manifestation in mice and man,” Archives of Dermatological Research, vol. 297, no. 8, pp. 345–351, 2006.
[260]  M. Bhushan, T. O. Bleiker, A. E. Ballsdon et al., “Anti-e-selectin is ineffective in the treatment of psoriasis: a randomized trial,” British Journal of Dermatology, vol. 146, no. 5, pp. 824–831, 2002.
[261]  T. Ishida, T. Joh, N. Uike et al., “Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study,” Journal of Clinical Oncology, vol. 30, no. 8, pp. 837–842, 2012.
[262]  P. Mirshahpanah, Y.-Y. Y. Li, N. Burkhardt, K. Asadullah, and T. M. Zollner, “CCR4 and CCR10 ligands play additive roles in mouse contact hypersensitivity,” Experimental Dermatology, vol. 17, no. 1, pp. 30–34, 2008.
[263]  R. J. Ludwig, S. Alban, and W.-H. Boehncke, “Structural requirements of heparin and related molecules to exert a multitude of anti-inflammatory activities,” Mini-Reviews in Medicinal Chemistry, vol. 6, no. 9, pp. 1009–1023, 2006.
[264]  J. Fritzsche, S. Alban, R. J. Ludwig et al., “The influence of various structural parameters of semisynthetic sulfated polysaccharides on the P-selectin inhibitory capacity,” Biochemical Pharmacology, vol. 72, no. 4, pp. 474–485, 2006.
[265]  M. Becker, G. Franz, and S. Alban, “Inhibition of PMN-elastase activity by semisynthetic glucan sulfates,” Thrombosis and Haemostasis, vol. 89, no. 5, pp. 915–925, 2003.
[266]  S. Alban, R. J. Ludwig, G. Bendas et al., “PS3, A semisynthetic Β-1,3-glucan sulfate, diminishes contact hypersensitivity responses through inhibition of L- and P-selectin functions,” Journal of Investigative Dermatology, vol. 129, no. 5, pp. 1192–1202, 2009.
[267]  A. Citro, E. Cantarelli, P. Maffi et al., “CXCR1/2 inhibition enhances pancreatic islet survival after transplantation,” The Journal of Clinical Investigation, vol. 122, pp. 3647–3651, 2012.
[268]  S. W. Schneider, M. Gaubitz, T. A. Luger, and G. Bonsmann, “Prompt response of refractory Schnitzler syndrome to treatment with anakinra,” Journal of the American Academy of Dermatology, vol. 56, no. 5, pp. S120–S122, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133