Chromolaena odorata (L.) King and Robinson (Siam weed) extract has been used to stop bleeding and in wound healing in many tropical countries. However, its detailed mechanisms have not been elucidated. In this study, we examined the molecular mechanisms by which Siam weed extract (SWE) affected hemostatic and wound healing activities. SWE promoted Balb/c 3T3 fibroblast cell migration and proliferation. Subsequently, we found that heme oxygenase-1 (HO-1), the accelerating wound healing enzyme, was increased at the transcriptional and translational levels by SWE treatments. The HO-1 promoter analyzed with luciferase assay was also increased by treatment of SWE in a dose-dependent manner. This induction may be mediated by several kinase pathways including MEK, p38MAPK, AKT, and JNK. Quantitative real-time PCR using undifferentiated promonocytic cell lines revealed that thromboxane synthase (TXS), a potent vasoconstrictor and platelet aggregator, was increased and MMP-9, an anti platelet aggregator, was decreased in the presence of SWE. Our studies presented that SWE accelerated hemostatic and wound healing activities by altering the expression of genes, including HO-1, TXS, and MMP-9. 1. Introduction Wound healing is an intricate process in which usually the skin repairs itself after injury. The process is divided into four overlapping phases: hemostasis (cessation of bleeding), inflammation, proliferation, and remodeling [1]. Hemostasis is mainly controlled by thromboxane synthase (TXS), which converts prostaglandin H2 into thromboxane A2, a potent vasoconstrictor and platelet aggregator [2]. Plasminogen activator inhibitor type 1 (PAI-1) also plays a role in hemostasis by inhibition of fibrinolysis, which prevents failure of the hemostatic process [3]. Subsequently, neutrophils release free radicals to kill bacteria in the inflammation phase [4, 5], and heme and heme proteins also accumulate at the local site of the wound. These heme and heme proteins have prooxidative and proinflammatory properties by inducing the expression of adhesion molecules, causing vascular permeability and leukocyte infiltration. These actions initiate wound healing process. Heme oxygenase-1 (HO-1) has antiinflammatory and antioxidant activities and is responsible for a wide range of wound healing functions. It converts heme into biliverdin/bilirubin, iron and carbon monoxide, which are potent antioxidant products. The overexpression of HO-1 helps to accelerate wound healing such as amelioration of inflammation, proliferation and protection against endothelial cell apoptosis
References
[1]
D. T. Nguyen, D. P. Orgrill, and G. F. Murphy, “The pathophysiologic basis for wound healing and cutaneous regeneration,” in Biomaterials for Threating Skin Loss, D. Orgill and G. Blanco, Eds., pp. 25–57, Woodhead Publishing Limited, Cambridge, UK, 2009.
[2]
R. Vezza, A. M. Mezzasoma, G. Venditti, and P. Gresele, “Prostaglandin endoperoxides and thromboxane A2 activate the same receptor isoforms in human platelets,” Thrombosis and Haemostasis, vol. 87, no. 1, pp. 114–121, 2002.
[3]
Y. Aso, “Plasminogen activator inhibitor (PAI)-1 in vascular inflammation and thrombosis,” Frontiers in Bioscience, vol. 12, no. 8, pp. 2957–2966, 2007.
[4]
P. Martin and S. J. Leibovich, “Inflammatory cells during wound repair: the good, the bad and the ugly,” Trends in Cell Biology, vol. 15, no. 11, pp. 599–607, 2005.
[5]
L. Fialkow, Y. Wang, and G. P. Downey, “Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function,” Free Radical Biology and Medicine, vol. 42, no. 2, pp. 153–164, 2007.
[6]
F. A. D. T. G. Wagener, H. E. van Beurden, J. W. von den Hoff, G. J. Adema, and C. G. Figdor, “The heme-heme oxygenase system: a molecular switch in wound healing,” Blood, vol. 102, no. 2, pp. 521–528, 2003.
[7]
I. Stamenkovic, “Extracellular matrix remodelling: the role of matrix metalloproteinases,” The Journal of Pathology, vol. 200, no. 4, pp. 448–464, 2003.
[8]
Y. Hirose, K. Chiba, T. Karasugi et al., “A functional polymorphism in THBS2 that affects alternative splicing and MMP binding is associated with lumbar-disc herniation,” American Journal of Human Genetics, vol. 82, no. 5, pp. 1122–1129, 2008.
[9]
P. A. Akah, “Mechanism of hemostatic activity of Eupatorium odoratum,” International Journal of Crude Drug Research, vol. 28, no. 4, pp. 253–256, 1990.
[10]
Y. Wongkrajang, S. Muagklum, P. Peungvicha, P. Jaiarj, and N. Opartkiattikul, “Eupatorium odoratum linn: an enhancer of hemostasis,” Mahidol University Journal of Pharmaceutical Sciences, vol. 17, pp. 9–13, 1990.
[11]
Y. Wongkrajang, S. Thongpraditchote, S. Nakornchai, W. Chuakul, K. Muangklum, and P. Jaiarj, “Hemostatic activities of Eupatorium odoratum Linn.: calcium removal extract,” Mahidol University Journal of Pharmaceutical Sciences, vol. 21, pp. 143–148, 1994.
[12]
T. T. Phan, M. A. Hughes, and G. W. Cherry, “Enhanced proliferation of fibroblasts and endothelial cells treated with an extract of the leaves of Chromolaena odorata (Eupolin), an herbal remedy for treating wounds,” Plastic and Reconstructive Surgery, vol. 101, no. 3, pp. 756–765, 1998.
[13]
T. T. Phan, J. Allen, M. A. Hughes, G. Cherry, and F. Wojnarowska, “Upregulation of adhesion complex proteins and fibronectin by human keratinocytes treated with an aqueous extract from the leaves of Chromolaena odorata (Eupolin),” European Journal of Dermatology, vol. 10, no. 7, pp. 522–527, 2000.
[14]
T. T. Phan, M. A. Hughes, and G. W. Cherry, “Effects of an aqueous extract from the leaves of Chromolaena odorata (Eupolin) on the proliferation of human keratinocytes and on their migration in an in vitro model of reepithelialization,” Wound Repair and Regeneration, vol. 9, no. 4, pp. 305–313, 2001.
[15]
H. Pandith, S. Thongpraditchote, Y. Wongkrajang, and W. Gritsanapan, “In vivo and in vitro hemostatic activity of Chromolaena odorata leaf extract,” Pharmaceutical Biology, vol. 50, no. 9, pp. 1073–1077, 2012.
[16]
T. Triratana, R. Suwannuraks, and W. Naengchomnong, “Effect of Eupatorium odoratum on blood coagulation,” Journal of the Medical Association of Thailand, vol. 74, no. 5, pp. 283–287, 1991.
[17]
O. Gabay, C. Sanchez, C. Salvat et al., “Stigmasterol: a phytosterol with potential anti-osteoarthritic properties,” Osteoarthritis and Cartilage, vol. 18, no. 1, pp. 106–116, 2010.
[18]
H. Pandith, X. Zhang, S. Thongpraditchote, Y. Wongkrajang, W. Gritsanapan, and S. J. Baek, “Effect of Siam weed extract and its bioactive component scutellarein tetramethyl ether on anti-inflammatory activity through NF-KB pathway,” Journal of Ethnopharmacology, vol. 147, no. 2, pp. 434–441, 2013.
[19]
P. Bao, A. Kodra, M. Tomic-Canic, M. S. Golinko, H. P. Ehrlich, and H. Brem, “The role of vascular endothelial growth factor in wound healing,” Journal of Surgical Research, vol. 153, no. 2, pp. 347–358, 2009.
[20]
A. Grochot-Przeczek, R. Lach, J. Mis et al., “Heme oxygenase-1 accelerates cutaneous wound healing in mice,” PLoS One, vol. 4, no. 6, Article ID e5803, 2009.
[21]
P. T. Thang, S. Patrick, L. S. Teik, and C. S. Yung, “Anti-oxidant effects of the extracts from the leaves of Chromolaena odorata on human dermal fibroblasts and epidermal keratinocytes against hydrogen peroxide and hypoxanthine-xanthine oxidase induced damage,” Burns, vol. 27, no. 4, pp. 319–327, 2001.
[22]
S. K. Ling, M. M. Pisar, and S. Man, “Platelet-activating factor (PAF) receptor binding antagonist activity of the methanol extracts and isolated flavonoids from Chromolaena odorata (L.) King and Robinson,” Biological and Pharmaceutical Bulletin, vol. 30, no. 6, pp. 1150–1152, 2007.
[23]
A. Zú?iga-Toalá, O. Medina-Campo, S. Espada, A. Cuadrado, and J. Pedraza-Chaverri, “Nordihydroguaiaretic acid induces heme oxygenase-1 (HO-1) and cytoprotection in a phosphatidyl inositol 3 kinase (PI3K)-dependent way in renal epithelial (LLC-PK1) cells,” Journal of Medicinal Plants Research, vol. 7, no. 5, pp. 186–190, 2013.
[24]
T. Nanayama, S. Hara, H. Inoue, C. Yokohama, and T. Tanabe, “Regulation of two isozymes of prostaglandin endoperoxide synthase and thromboxane synthase in human monoblastoid cell line U937,” Prostaglandins, vol. 49, no. 6, pp. 371–382, 1995.
[25]
V. Ellis, T.-C. Wun, N. Behrendt, E. Ronne, and K. Dano, “Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors,” Journal of Biological Chemistry, vol. 265, no. 17, pp. 9904–9908, 1990.
[26]
H. Watanabe, I. Nakanishi, K. Yamashita, T. Hayakawa, and Y. Okada, “Matrix metalloproteinase-9 (92 kDa gelatinase/type IV collagenase) from U937 monoblastoid cells: correlation with cellular invasion,” Journal of Cell Science, vol. 104, no. 4, pp. 991–999, 1993.
[27]
P. Jurasz, A. W. Y. Chung, A. Radomski, and M. W. Radomski, “Nonremodeling properties of matrix metalloproteinases: the platelet connection,” Circulation Research, vol. 90, no. 10, pp. 1041–1043, 2002.
[28]
C. Fernandez-Patron, M. A. Martinez-Cuesta, E. Salas et al., “Differential regulation of platelet aggregation by matrix metalloproteinases-9 and -2,” Thrombosis and Haemostasis, vol. 82, no. 6, pp. 1730–1735, 1999.
[29]
Y. Liu, D. Min, T. Bolton et al., “Increased matrix metalloproteinase-9 predicts poor wound healing in diabetic foot ulcers,” Diabetes Care, vol. 32, no. 1, pp. 117–119, 2009.