Photoaging of the skin depends primarily on the degree of ultraviolet radiation (UVR) and on an amount of melanin in the skin (skin phototype). In addition to direct or indirect DNA damage, UVR activates cell surface receptors of keratinocytes and fibroblasts in the skin, which leads to a breakdown of collagen in the extracellular matrix and a shutdown of new collagen synthesis. It is hypothesized that dermal collagen breakdown is followed by imperfect repair that yields a deficit in the structural integrity of the skin, formation of a solar scar, and ultimately clinically visible skin atrophy and wrinkles. Many studies confirmed that acute exposure of human skin to UVR leads to oxidation of cellular biomolecules that could be prevented by prior antioxidant treatment and to depletion of endogenous antioxidants. Skin has a network of all major endogenous enzymatic and nonenzymatic protective antioxidants, but their role in protecting cells against oxidative damage generated by UV radiation has not been elucidated. It seems that skin’s antioxidative defence is also influenced by vitamins and nutritive factors and that combination of different antioxidants simultaneously provides synergistic effect. 1. Introduction Unlike chronological aging, which is predetermined by individual’s physiological predisposition, photoaging depends primarily on the degree of sun exposure and on an amount of melanin in the skin. Individuals who have a history of intensive sun exposure, live in sunny geographical areas, and have fair skin will experience the greatest amount of ultraviolet radiation (UVR) skin load and consequently severe photoaging [1, 2]. Clinical signs of photoaging include wrinkles, mottled pigmentation (hypo- or hyperpigmentation), rough skin, loss of the skin tone, dryness, sallowness, deep furrows, severe atrophy, telangiectasias, laxity, leathery appearance, solar elastosis, actinic purpura, precancerous lesions, skin cancer, and melanoma [3, 4]. Sun-exposed areas of the skin, such as the face, neck, upper chest, hands, and forearms, are the sites where these changes occur most often [5]. Chronological skin aging, on the other hand, is characterized by laxity and fine wrinkles, as well as development of benign growths such as seborrheic keratoses and angiomas, but it is not associated with increased/decreased pigmentation or with deep wrinkles that are characteristic for photoaging [6]. Seborrheic keratoses are regarded as best biomarker of intrinsic skin aging since thier appearance is independent on sun exposure. While intrinsically aged skin does not
References
[1]
G. J. Fisher, S. Kang, J. Varani et al., “Mechanisms of photoaging and chronological skin aging,” Archives of Dermatology, vol. 138, no. 11, pp. 1462–1470, 2002.
[2]
L. H. Kligman and A. M. Kligman, “The nature of photoaging: its prevention and repair,” Photodermatology, vol. 3, no. 4, pp. 215–227, 1986.
[3]
M. Yaar, M. S. Eller, and B. A. Gilchrest, “Fifty years of skin aging,” Journal of Investigative Dermatology Symposium Proceedings, vol. 7, no. 1, pp. 51–58, 2002.
[4]
B. A. Gilchrest, “Skin aging and photoaging,” Dermatology Nursing, vol. 2, no. 2, pp. 79–82, 1990.
[5]
Y. R. Helfrich, D. L. Sachs, and J. J. Voorhees, “Overview of skin aging and photoaging,” Dermatology Nursing, vol. 20, no. 3, pp. 177–184, 2008.
[6]
M. Yaar, M. S. Lee, T. M. Rünger, M. S. Eller, and B. Gilchrest, “Telomere mimetic oligonucleotides protect skin cells from oxidative damage,” Annales de Dermatologie et de Vénéréologie, vol. 129, pp. 1–18, 2002.
[7]
D. R. Bielenberg, C. D. Bucana, R. Sanchez, C. K. Donawho, M. L. Kripke, and I. J. Fidler, “Molecular regulation of UVB-induced cutaneous angiogenesis,” Journal of Investigative Dermatology, vol. 111, no. 5, pp. 864–872, 1998.
[8]
K. Yano, H. Oura, and M. Detmar, “Targeted overexpression of the angiogenesis inhibitor thrombospondin-1 in the epidermis of transgenic mice prevents ultraviolet-B-induced angiogenesis and cutaneous photo-damage,” Journal of Investigative Dermatology, vol. 118, no. 5, pp. 800–805, 2002.
[9]
L. E. Laurent-Applegate and S. Schwarzkopf, “Photooxidative stress in skin and regulation of gene expression,” in Environmental Stressors in Health and Disease, J. Fuchs and L. Packer, Eds., Marcel Dekker, New York, NY, USA, 2001.
[10]
B. Halliwell and J. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, New York, NY, USA, 4th edition, 2007.
[11]
S. Grether-Beck, M. Wlaschek, J. Krutmann, and K. Scharffetter-Kochanek, “Photodamage and photoaging—prevention and treatment,” Journal der Deutschen Dermatologischen Gesellschaft, vol. 3, no. 2, pp. S19–S25, 2005.
[12]
W. A. Bruls, H. Slaper, J. C. van der Leun, and L. Berrens, “Transmission of human epidermis and stratum corneum as a function of thickness in the ultraviolet and visible wavelengths,” Photochemistry and Photobiology, vol. 40, no. 4, pp. 485–494, 1984.
[13]
International Agency for Research on Cancer (IARC), “Summaries & Evaluations, Solar and ultraviolet radiation,” vol. 55, 1992, http://monographs.iarc.fr/ENG/Monographs/vol55/volume55.pdf.
[14]
M. J. Peak, J. G. Peak, and C. A. Jones, “Different (direct and indirect) mechanisms for the induction of DNA-protein crosslinks in human cells by far- and near-ultraviolet radiations (290 and 405?nm),” Photochemistry and Photobiology, vol. 42, no. 2, pp. 141–146, 1985.
[15]
M. J. Peak, J. G. Peak, and B. A. Carnes, “Induction of direct and indirect single-strand breaks in human cell DNA by far- and near-ultraviolet radiations: action spectrum and mechanisms,” Photochemistry and Photobiology, vol. 45, no. 3, pp. 381–387, 1987.
[16]
J. G. Peak, M. J. Peak, R. S. Sikorski, and C. A. Jones, “Induction of DNA-protein crosslinks in human cells by ultraviolet and visible radiations: action spectrum,” Photochemistry and Photobiology, vol. 41, no. 3, pp. 295–302, 1985.
[17]
B. S. Rosenstein and J. M. Ducore, “Induction of DNA strand breaks in normal human fibroblasts exposed to monochromatic ultraviolet and visible wavelengths in the 240–546?nm range,” Photochemistry and Photobiology, vol. 38, no. 1, pp. 51–55, 1983.
[18]
D. B. Yarosh, “DNA damage and repair in skin aging,” in Textbook of Aging Skin, M. A. Farage, K. W. Miller, and H. I. Maibach, Eds., Springer, Berlin, Germany, 2010.
[19]
B. Halliwell and J. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, UK, 3rd edition, 1999.
[20]
J. Cadet, M. Berger, T. Douki et al., “Effects of UV and visible radiation on DNA—final base damage,” Biological Chemistry, vol. 378, no. 11, pp. 1275–1286, 1997.
[21]
F. Hutchinson, “Chemical changes induced in DNA by ionizing radiation,” Progress in Nucleic Acid Research and Molecular Biology, vol. 32, no. C, pp. 115–154, 1985.
[22]
H. Patrick and R. O. Rahn, “Photochemistry of DNA and polynucleotides: photoproducts,” in Photochemistry and Photobiology of Nucleic Acids, S. Y. Wang, Ed., vol. 2, pp. 35–95, Academic Press, New York, NY, USA, 1976.
[23]
G. J. Fisher, “The pathophysiology of photoaging of the skin,” Cutis, vol. 75, no. 2, pp. 5–9, 2005.
[24]
C. Rasche and P. Elsner, “Skin aging: a brief summary of characteristic changes,” in Textbook of Aging Skin, M. A. Ferage, K. W. Miller, and H. I. Maibach, Eds., Springer, Berlin, Germany, 2010.
[25]
J. Krutman and B. A. Gilchrest, “Photoaging of skin,” in Skin Aging, B. Gilchrest and J. Krutmann, Eds., Springer, Berlin, Germany, 2006.
[26]
K. K. Dong, N. Damaghi, S. D. Picart et al., “UV-induced DNA damage initiates release of MMP-1 in human skin,” Experimental Dermatology, vol. 17, no. 12, pp. 1037–1044, 2008.
[27]
D. Fagot, D. Asselineau, and F. Bernerd, “Direct role of human dermal fibroblasts and indirect participation of epidermal keratinocytes in MMP-1 production after UV-B irradiation,” Archives of Dermatological Research, vol. 293, no. 11, pp. 576–583, 2002.
[28]
J. Brinckmann, Y. Acil, H. H. Wolff, and P. K. Muller, “Collagen synthesis in (sun-)aged human skin and in fibroblasts derived from sun-exposed and sun-protected body sites,” Journal of Photochemistry and Photobiology B, vol. 27, no. 1, pp. 33–38, 1995.
[29]
R. A. Greenwald, S. Zucker, and L. M. Golub, Inhibition of Matrix Metalloproteinases: Therapeutic Applications, New York Academy of Sciences, New York, NY, USA, 1999.
[30]
L. J. McCawley and L. M. Matrisian, “Matrix metalloproteinases: multifunctional contributors to tumor progression,” Molecular Medicine Today, vol. 6, no. 4, pp. 149–156, 2000.
[31]
L. J. McCawley and L. M. Matrisian, “Matrix metalloproteinases: they're not just for matrix anymore!,” Current Opinion in Cell Biology, vol. 13, no. 5, pp. 534–540, 2001.
[32]
G. Smutzer and P. Billings, “Molecular demolition,” The Scientist, vol. 16, no. 4, pp. 34–36, 2002.
[33]
C. Rocquet and F. Bonté, “Molecular aspects of skin ageing: recent data,” Acta Dermatovenerologica Alpina, Pannonica et Adriatica, vol. 11, no. 3, pp. 71–94, 2002.
[34]
K. Scharffetter-Kochanek, P. Brenneisen, J. Wenk et al., “Photoaging of the skin from phenotype to mechanisms,” Experimental Gerontology, vol. 35, no. 3, pp. 307–316, 2000.
[35]
K. Scharffetter-Kochanek, M. Wlaschek, P. Brenneisen, M. Schauen, R. Blaudschun, and J. Wenk, “UV-induced reactive oxygen species in photocarcinogenesis and photoaging,” Biological Chemistry, vol. 378, no. 11, pp. 1247–1257, 1997.
[36]
S. Kang, J. H. Chung, J. H. Lee et al., “Topical n-acetyl cysteine and genistein prevent ultraviolet-light-induced signaling that leads to photoaging in human skin in vivo,” Journal of Investigative Dermatology, vol. 120, no. 5, pp. 835–841, 2003.
[37]
G. J. Fisher, S. C. Datta, H. S. Talwar et al., “Molecular basis of sun-induced premature skin ageing and retinoid antagonism,” Nature, vol. 379, no. 6563, pp. 335–339, 1996.
[38]
T. Quan, T. He, S. Kang, J. J. Voorhees, and G. J. Fisher, “Ultraviolet irradiation alters transforming growth factor β/Smad pathway in human skin in vivo,” Journal of Investigative Dermatology, vol. 119, no. 2, pp. 499–506, 2002.
[39]
G. J. Fisher, Z. Wang, S. C. Datta, J. Varani, S. Kang, and J. J. Voorhees, “Pathophysiology of premature skin aging induced by ultraviolet light,” The New England Journal of Medicine, vol. 337, no. 20, pp. 1419–1428, 1997.
[40]
G. J. Fisher and J. J. Voorhees, “Molecular mechanisms of photoaging and its prevention by retinoic acid: ultraviolet irradiation induces MAP kinase signal transduction cascades that induce Ap-1-regulated matrix metalloproteinases that degrade human skin in vivo,” Journal of Investigative Dermatology Symposium Proceedings, vol. 3, no. 1, pp. 61–68, 1998.
[41]
C. Oresajo, M. Yatskayer, A. Galdi, P. Foltis, and S. Pillai, “Complementary effects of antioxidants and sunscreens in reducing UV-induced skin damage as demonstrated by skin biomarker expression,” Journal of Cosmetic and Laser Therapy, vol. 12, no. 3, pp. 157–162, 2010.
[42]
F. McArdle, L. E. Rhodes, R. Parslew, C. I. A. Jack, P. S. Friedmann, and M. J. Jackson, “UVR-induced oxidative stress in human skin in vivo: effects of oral vitamin C supplementation,” Free Radical Biology and Medicine, vol. 33, no. 10, pp. 1355–1362, 2002.
[43]
Y. Shindo, E. Witt, and L. Packer, “Antioxidant defense mechanisms in murine epidermis and dermis and their responses to ultraviolet light,” Journal of Investigative Dermatology, vol. 100, no. 3, pp. 260–265, 1993.
[44]
A. Poswig, J. Wenk, P. Brenneisen et al., “Adaptive antioxidant response of manganese-superoxide dismutase following repetitive UVA irradiation,” Journal of Investigative Dermatology, vol. 112, no. 1, pp. 13–18, 1999.
[45]
J. Fuchs and H. Kern, “Modulation of UV-light-induced skin inflammation by D-alpha-tocopherol and L-ascorbic acid: a clinical study using solar simulated radiation,” Free Radical Biology and Medicine, vol. 25, no. 9, pp. 1006–1012, 1998.
[46]
C. S. Sander, H. Chang, S. Salzmann et al., “Photoaging is associated with protein oxidation in human skin in vivo,” Journal of Investigative Dermatology, vol. 118, no. 4, pp. 618–625, 2002.
[47]
T. Blatt, H. Wenck, and K. P. Wittern, “Alterations of energy metabolism in cutaneous aging,” in Textbook of Aging Skin, M. A. Farage, K. W. Miller, and H. I. Maibach, Eds., Springer, Berlin, Germany, 2010.
[48]
S. Bruce, “Cosmeceuticals for the attenuation of extrinsic and intrinsic dermal aging,” Journal of Drugs in Dermatology, vol. 7, no. 2, supplement, pp. s17–s22, 2008.
[49]
J. Levin, J. Q. del Rosso, and S. B. Momin, “How much do we really know about our favorite cosmeceutical ingredients?” Journal of Clinical and Aesthetic Dermatology, vol. 3, no. 2, pp. 22–41, 2010.
[50]
B. Poljsak, Skin Aging, Antioxidants and Free Radicals, Nova Science, New York, NY, USA, 2012.
[51]
A. R. Elmore, “Final report of the safety assessment of L-ascorbic acid, calcium ascorbate, magnesium ascorbate, magnesium ascorbyl phosphate, sodium ascorbate, and sodium ascorbyl phosphate as used in cosmetics,” International Journal of Toxicology, vol. 24, no. 2, pp. 51–111, 2005.
[52]
L. Packer and G. Valacchi, “Antioxidants and the response of skin to oxidative stress: vitamin E as a key indicator,” Skin Pharmacology and Applied Skin Physiology, vol. 15, no. 5, pp. 282–290, 2002.
[53]
E. Boelsma, H. F. J. Hendriks, and L. Roza, “Nutritional skin care: health effects of micronutrients and fatty acids,” American Journal of Clinical Nutrition, vol. 73, no. 5, pp. 853–864, 2001.
[54]
L. Packer, S. U. Weber, and G. Rimbach, “Molecular aspects of α-tocotrienol antioxidant action and cell signalling,” Journal of Nutrition, vol. 131, no. 2, pp. 369S–373S, 2001.
[55]
J. D. Ribaya-Mercado, M. Garmyn, B. A. Gilchrest, and R. M. Russell, “Skin lycopene is destroyed preferentially over β-carotene during ultraviolet irradiation in humans,” Journal of Nutrition, vol. 125, no. 7, pp. 1854–1859, 1995.
[56]
H. Sies and W. Stahl, “Carotenoids and UV protection,” Photochemical and Photobiological Sciences, vol. 3, no. 8, pp. 749–752, 2004.
[57]
W. Stahl and J. Krutmann, “Systemic photoprotection through carotenoids,” Hautarzt, vol. 57, no. 4, pp. 281–285, 2006.
[58]
S. Cho, D. H. Lee, C.-H. Won et al., “Differential effects of low-dose and high-dose beta-carotene supplementation on the signs of photoaging and type I procollagen gene expression in human skin in vivo,” Dermatology, vol. 221, no. 2, pp. 160–171, 2010.
[59]
U. Heinrich, M. Wiebusch, and H. Tronnier, “Photoprotection from ingested carotenoids,” Cosmetics & Toiletries, vol. 113, pp. 61–70, 1998.
[60]
U. Heinrich, C. G?rtner, M. Wiebusch et al., “Supplementation with β-carotene or a similar amount of mixed carotenoids protects humans from UV-induced erythema,” Journal of Nutrition, vol. 133, no. 1, pp. 98–101, 2003.
[61]
J. Lee, S. Jiang, N. Levine, and R. R. Watson, “Carotenoid supplementation reduces erythema in human skin after simulated solar radiation exposure,” Proceedings of the Society for Experimental Biology and Medicine, vol. 223, no. 2, pp. 170–174, 2000.
[62]
H. P. M. Gollnick, W. Hopfenmüller, C. Hemmes et al., “Systemic beta carotene plus topical UV-sunscreen are an optimal protection against harmful effects of natural UV-sunlight: results of the Berlin-Eilath study,” European Journal of Dermatology, vol. 6, no. 3, pp. 200–205, 1996.
[63]
M. M. Mathews-Roth and N. I. Krinsky, “Carotenoids affect development of UV-B induced skin cancer,” Photochemistry and Photobiology, vol. 46, no. 4, pp. 507–509, 1987.
[64]
A. Cordero Jr., “La vitamina a acida en la piel senile,” Actualizaciones Ter Dermatologica, vol. 6, pp. 49–54, 1983.
[65]
A. M. Kligman, G. L. Grove, R. Hirose, and J. J. Leyden, “Topical tretinoin for photoaged skin,” Journal of the American Academy of Dermatology, vol. 15, no. 4, pp. 836–859, 1986.
[66]
C. E. M. Griffiths, A. N. Russman, G. Majmudar, R. S. Singer, T. A. Hamilton, and J. J. Voorhees, “Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid),” The New England Journal of Medicine, vol. 329, no. 8, pp. 530–535, 1993.
[67]
B. A. Gilchrest, “Treatment of photodamage with topical tretinoin: an overview,” Journal of the American Academy of Dermatology, vol. 36, no. 3, part 2, pp. S27–S36, 1997.
[68]
G. D. Weinstein, T. P. Nigra, P. E. Pochi et al., “Topical tretinoin for treatment of photodamaged skin: a multicenter study,” Archives of Dermatology, vol. 127, no. 5, pp. 659–665, 1991.
[69]
J. J. Voorhees, “Clinical effects of long-term therapy with topical tretinoin and cellular mode of action,” Journal of International Medical Research, vol. 18, no. 3, pp. 26C–28C, 1990.
[70]
J. J. Leyden, D. F. Heffel, and T. A. Miller, “Treatment of photodamaged skin with topical tretinoin: an update,” Plastic and Reconstructive Surgery, vol. 102, no. 5, pp. 1672–1675, 1998.
[71]
U. Hoppe, J. Bergemann, W. Diembeck et al., “Coenzyme Q10, a cutaneous antioxidant and energizer,” BioFactors, vol. 9, no. 2-4, pp. 371–378, 1999.
[72]
K. Muta-Takada, T. Terada, H. Yamanishi et al., “Coenzyme Q10 protects against oxidative stress-induced cell death and enhances the synthesis of basement membrane components in dermal and epidermal cells,” BioFactors, vol. 35, no. 5, pp. 435–441, 2009.
[73]
M. Inui, M. Ooe, K. Fujii, H. Matsunaka, M. Yoshida, and M. Ichihashi, “Mechanisms of inhibitory effects of CoQ10 on UVB-induced wrinkle formation in vitro and in vivo,” BioFactors, vol. 32, no. 1-4, pp. 237–243, 2008.
[74]
M. J. Connor and L. A. Wheeler, “Depletion of cutaneous glutathione by ultraviolet radiation,” Photochemistry and Photobiology, vol. 46, no. 2, pp. 239–245, 1987.
[75]
M.-J. Richard, P. Guiraud, M.-T. Leccia, J.-C. Beani, and A. Favier, “Effect of zinc supplementation on resistance of cultured human skin fibroblasts toward oxidant stress,” Biological Trace Element Research, vol. 37, no. 2-3, pp. 187–199, 1993.
[76]
D. J. Tate Jr., M. V. Miceli, and D. A. Newsome, “Zinc protects against oxidative damage in cultured human retinal pigment epithelial cells,” Free Radical Biology and Medicine, vol. 26, no. 5-6, pp. 704–713, 1999.
[77]
F. Afaq and H. Mukhtar, “Photochemoprevention by botanical antioxidants,” Skin Pharmacology and Applied Skin Physiology, vol. 15, no. 5, pp. 297–306, 2002.
[78]
S. K. Katiyar, N. Ahmad, and H. Mukhtar, “Green tea and skin,” Archives of Dermatology, vol. 136, no. 8, pp. 989–994, 2000.
[79]
S. K. Katiyar, “Skin photoprotection by green tea: antioxidant and immunomodulatory effects,” Current drug targets. Immune, endocrine and metabolic disorders, vol. 3, no. 3, pp. 234–242, 2003.
[80]
Y.-P. Lu, Y.-R. Lou, Q.-Y. Peng, J.-G. Xie, P. Nghiem, and A. H. Conney, “Effect of caffeine on the ATR/Chk1 pathway in the epidermis of UVB-irradiated mice,” Cancer Research, vol. 68, no. 7, pp. 2523–2529, 2008.
[81]
R. P. Singh and R. Agarwal, “Flavonoid antioxidant silymarin and skin cancer,” Antioxidants and Redox Signaling, vol. 4, no. 4, pp. 655–663, 2002.
[82]
N. Ahmad, H. Gali, S. Javed, and R. Agarwal, “Skin cancer chemopreventive effects of a flavonoid antioxidant silymarin are mediated via impairment of receptor tyrosine kinase signaling and perturbation in cell cycle progression,” Biochemical and Biophysical Research Communications, vol. 247, no. 2, pp. 294–301, 1998.
[83]
H. Wei, R. Bowen, Q. Cai, S. Barnes, and Y. Wang, “Antioxidant and antipromotional effects of the soybean isoflavone genistein,” Proceedings of the Society for Experimental Biology and Medicine, vol. 208, no. 1, pp. 124–130, 1995.
[84]
U. Heinrich, K. Neukam, H. Tronnier, H. Sies, and W. Stahl, “Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in women,” Journal of Nutrition, vol. 136, no. 6, pp. 1565–1569, 2006.
[85]
F. McArdle, L. E. Rhodes, R. A. G. Parslew et al., “Effects of oral vitamin E and β-carotene supplementation on ultraviolet radiation-induced oxidative stress in human skin,” American Journal of Clinical Nutrition, vol. 80, no. 5, pp. 1270–1275, 2004.
[86]
W. Stahl, U. Heinrich, H. Jungmann, H. Sies, and H. Tronnier, “Carotenoids and carotenoids plus vitamin E protect against ultraviolet light-induced erythema in humans,” American Journal of Clinical Nutrition, vol. 71, no. 3, pp. 795–798, 2000.
[87]
D. Albanes, O. P. Heinonen, P. R. Taylor et al., “α-tocopherol and β-carotene supplements and lung cancer incidence in the alpha-tocopherol, beta-carotene cancer prevention study: effects of base- line characteristics and study compliance,” Journal of the National Cancer Institute, vol. 88, no. 21, pp. 1560–1570, 1996.
[88]
O. Aust, W. Stahl, H. Sies, H. Tronnier, and U. Heinrich, “Supplementation with tomato-based products increases lycopene, phytofluene, and phytoene levels in human serum and protects against UV-light-induced erythema,” International Journal for Vitamin and Nutrition Research, vol. 75, no. 1, pp. 54–60, 2005.
[89]
F. Bonina, M. Lanza, L. Montenegro et al., “Flavonoids as potential protective agents against photo-oxidative skin damage,” International Journal of Pharmaceutics, vol. 145, no. 1-2, pp. 87–94, 1996.
[90]
B. Eberlein-Konig, M. Placzek, and B. Przybilla, “Protective effect against sunburn of combined systemic ascorbic acid (vitamin C) and d-α-tocopherol (vitamin E),” Journal of the American Academy of Dermatology, vol. 38, no. 1, pp. 45–48, 1998.
[91]
E. A. Offord, J.-C. Gautier, O. Avanti et al., “Photoprotective potential of lycopene, β-carotene, vitamin E, vitamin C and carnosic acid in UVA-irradiated human skin fibroblasts,” Free Radical Biology and Medicine, vol. 32, no. 12, pp. 1293–1303, 2002.
[92]
J. P. Césarini, L. Michel, J. M. Maurette, H. Adhoute, and M. Béjot, “Immediate effects of UV radiation on the skin: modification by an antioxidant complex containing carotenoids,” Photodermatology Photoimmunology and Photomedicine, vol. 19, no. 4, pp. 182–189, 2003.
[93]
E. Postaire, H. Jungmann, M. Bejot, U. Heinrich, and H. Tronnier, “Evidence for antioxidant nutrients-induced pigmentation in skin: results of a clinical trial,” Biochemistry and Molecular Biology International, vol. 42, no. 5, pp. 1023–1033, 1997.
[94]
A.-K. Greul, J.-U. Grundmann, F. Heinrich et al., “Photoprotection of UV-irradiated human skin: an antioxidative combination of vitamins E and C, carotenoids, selenium and proanthocyanidins,” Skin Pharmacology and Applied Skin Physiology, vol. 15, no. 5, pp. 307–315, 2002.
[95]
S.-L. Yeh, C.-S. Huang, and M.-L. Hu, “Lycopene enhances UVA-induced DNA damage and expression of heme oxygenase-1 in cultured mouse embryo fibroblasts,” European Journal of Nutrition, vol. 44, no. 6, pp. 365–370, 2005.
[96]
C. Wolf, A. Steiner, and H. Honingsmann, “Do oral carotenoids protect human skin against ultraviolet erythema, psoralen phototoxicity, and ultraviolet-induced DNA damage?” Journal of Investigative Dermatology, vol. 90, no. 1, pp. 55–57, 1988.
[97]
M. Garmyn, J. D. Ribaya-Mercado, R. M. Russel, J. Bhawan, and B. A. Gilchrest, “Effect of beta-carotene supplementation on the human sunburn reaction,” Experimental Dermatology, vol. 4, no. 2, pp. 104–111, 1995.
[98]
A. Green, G. Williams, R. Neale et al., “Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial,” Lancet, vol. 354, no. 9180, pp. 723–729, 1999.
[99]
E. R. Greenberg, J. A. Baron, T. A. Stukel et al., “A clinical trial of beta carotene to prevent basal-cell and squamous-cell cancers of the skin,” The New England Journal of Medicine, vol. 323, no. 12, pp. 789–795, 1990.
[100]
U. M. Frieling, D. A. Schaumberg, T. S. Kupper, J. Muntwyler, and C. H. Hennekens, “A randomized, 12-year primary-prevention trial of beta carotene supplementation for nonmelanoma skin cancer in the physicians' health study,” Archives of Dermatology, vol. 136, no. 2, pp. 179–184, 2000.
[101]
C. H. Hennekens, J. E. Buring, J. E. Manson et al., “Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease,” The New England Journal of Medicine, vol. 334, no. 18, pp. 1145–1149, 1996.
[102]
R. Serri and M. Iorizzo, “Cosmeceuticals: focus on topical retinoids in photoaging,” Clinics in Dermatology, vol. 26, no. 6, pp. 633–635, 2008.
[103]
C. E. M. Griffiths, A. N. Russman, G. Majmudar, R. S. Singer, T. A. Hamilton, and J. J. Voorhees, “Restoration of collagen formation in photodamaged human skin by tretinoin (retinoic acid),” The New England Journal of Medicine, vol. 329, no. 8, pp. 530–535, 1993.
[104]
O. Yamamoto, J. Bhawan, G. Solares, A. W. Tsay, and B. A. Gilchrest, “Ultrastructural effects of topical tretinoin on dermo-epidermal junction and papillary dermis in photodamaged skin. A controlled study,” Experimental Dermatology, vol. 4, no. 3, pp. 146–154, 1995.
[105]
M. Chen, S. Goyal, X. Cai, E. A. O'Toole, and D. T. Woodley, “Modulation of type VII collagen (anchoring fibril) expression by retinoids in human skin cells,” Biochimica et Biophysica Acta, vol. 1351, no. 3, pp. 333–340, 1997.
[106]
J. S. Weiss, C. N. Ellis, J. T. Headington, and J. J. Voorhees, “Topical tretinoin in the treatment of aging skin,” Journal of the American Academy of Dermatology, vol. 19, no. 1, pp. 169–175, 1988.
[107]
L. Rittie, G. J. Fisher, and J. Voorhees, “Retinoid therapy for photoaging,” in Skin Aging, B. Gilchrest and J. Krutmann, Eds., Springer, Berlin, Germany, 2006.
[108]
M. Inui, M. Ooe, K. Fujii, H. Matsunaka, M. Yoshida, and M. Ichihashi, “Mechanisms of inhibitory effects of CoQ10 on UVB-induced wrinkle formation in vitro and in vivo,” BioFactors, vol. 32, no. 1–4, pp. 237–243, 2008.
[109]
D.-W. Kim, I. K. Hwang, D. W. Kim et al., “Coenzyme Q10 effects on manganese superoxide dismutase and glutathione peroxidase in the hairless mouse skin induced by ultraviolet B irradiation,” BioFactors, vol. 30, no. 3, pp. 139–147, 2007.
[110]
B. S. Choi, H. S. Song, H. R. Kim et al., “Effect of coenzyme Q10 on cutaneous healing in skin-incised mice,” Archives of Pharmacal Research, vol. 32, no. 6, pp. 907–913, 2009.
[111]
H. K. Biesalski and U. C. Obermueller-Jevic, “UV light, beta-carotene and human skin—beneficial and potentially harmful effects,” Archives of Biochemistry and Biophysics, vol. 389, no. 1, pp. 1–6, 2001.
[112]
E. Boelsma, H. F. J. Hendriks, and L. Roza, “Nutritional skin care: health effects of micronutrients and fatty acids,” American Journal of Clinical Nutrition, vol. 73, no. 5, pp. 853–864, 2001.
[113]
J. E. Packer, T. F. Slater, and R. L. Willson, “Direct observation of a free radical interaction between vitamin E and vitamin C,” Nature, vol. 278, no. 5706, pp. 737–738, 1979.
[114]
R. Stocker, M. J. Weidemann, and N. H. Hunt, “Possible mechanisms responsible for the increased ascorbic acid content of Plasmodium vinckei-infected mouse erythrocytes,” Biochimica et Biophysica Acta, vol. 881, no. 3, pp. 391–397, 1986.
[115]
H. Ohman and A. Vahlquist, “in vivo studies concerning a pH gradient in human stratum corneum and upper epidermis,” Acta Dermato-Venereologica, vol. 74, no. 5, pp. 375–379, 1994.
[116]
K. Werninghaus, M. Meydani, J. Bhawan, R. Margolis, J. B. Blumberg, and B. A. Gilchrest, “Evaluation of the photoprotective effect of oral vitamin E supplementation,” Archives of Dermatology, vol. 130, no. 10, pp. 1257–1261, 1994.
[117]
B. Poljsak, R. Dahmane, and A. Godic, “Skin and antioxidants,” Journal of Cosmetic and Laser Therapy, vol. 15, no. 2, pp. 107–113, 2013.