Objective. This study aimed to evaluate the effect of different storage solutions that simulate acidic, alkaline, and sebum conditions on the physical properties of pigmented (colorant elastomer) cosmesil M511 maxillofacial prosthetic material. Materials and Methods. Sixty specimens were prepared according to the manufacturer's instructions and were tested before and after immersion of different storage conditions for six months at 37?°C. The following tests were performed: color changes (group I), solution absorption (group II), surface roughness (group III), and scanning electron microscopy (group IV). Results. There were no significant changes observed in the color and solution absorption tests while surface roughness revealed significant difference between control group and other testing storage medium groups, and this result was supported by SEM analysis that revealed limited surface changes. Conclusions. Cosmaseil material is an acceptable cross-linked formulation that withstands storage in different solutions with variable pH. The addition of pigment cannot vary the physical properties of these materials. Surface roughness test as well as SEM microscopic study showed moderate changes indicating a limited effect on the surface of the material. 1. Introduction In contemporary society where beauty is considered essential, patients with facial mutilations due to congenital malformations, oncologic surgery, or trauma are often marginalized [1, 2]. In view of this reality, the goal of facial prosthetic technology is to offer individuals’ aesthetic and comfort while improving their self-esteem and quality of life [3, 4]. Maxillofacial prostheses are used to transform congenital, developmental, and acquired defects of the head and neck into natural appearing reproductions of the missing parts, thus, providing an acceptable appearance and improved function. One of the Modern materials for external prostheses includes vinyl plastisols, polymethylmethacrylates, polyurethanes, latex, and silicone elastomers [5]. The prosthodontists are limited by the materials used in fabrication for facial prosthesis, movable tissue beds, graft and flap applications, unsuitability of anatomic undercuts, and patient acceptance toward the use of prosthesis [6]. There is no ideal facial prosthetic material, although there have been improvements in the last few decades, and silicone rubbers have established the current state-of-the-art material. Despite the advances in reconstructive and plastic surgery, replacement of the intricate facial structures is still required,
References
[1]
M. C. Goiato, M. F. Haddad, M. A. C Sinhoreti, D. M. dos Santos, A. A. Pesqueira, and A. Moreno, “Influence of opacifiers on dimensional stability and detail reproduction of maxillofacial silicone elastomer,” BioMedical Engineering, vol. 9, article 85, 2010.
[2]
A. A. de Sousa and B. S. C. Mattos, “Magnetic retention and bar-clip attachment for implant-retained auricular prostheses: A comparative analysis,” International Journal of Prosthodontics, vol. 21, no. 3, pp. 233–236, 2008.
[3]
P. F. Allen, G. Watson, L. Stassen, and A. S. McMillan, “Peri-implant soft tissue maintenance in patients with craniofacial implant retained prostheses,” International Journal of Oral and Maxillofacial Surgery, vol. 29, no. 2, pp. 99–103, 2000.
[4]
R. W. C. Chung, A. S. C. Siu, F. C. S. Chu, and T. W. Chow, “Magnet-retained auricular prosthesis with an implant-supported composite bar: a clinical report,” Journal of Prosthetic Dentistry, vol. 89, no. 5, pp. 446–449, 2003.
[5]
B. B. Turhan, H. Y?lmaz, C. S. Ayd?n, I. Karakoca, and K. Y?lmaz, “In vitro cytotoxicity of maxillofacial silicone elastomers: effect of accelerated aging,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 89B, no. 1, pp. 122–126, 2009.
[6]
J. Beumer, T. A. Curtis, and M. T. Maurinick, Maxillofacial Rehabilitation: Prosthodontic and Surgical Considerations, Ishiyaku EuroAmerica, St. Louis, Mo, USA, 1996.
[7]
R. J. Fonseca, Oral and Maxillofacial Surgery. Reconstructive and Implant Surgery, vol. 7, W. B. Saunders, Philadelphia, Pa, USA, 1st edition, 2000.
[8]
J. G. N?rby, “The origin and the meaning of the little p in pH,” Trends in Biochemical Sciences, vol. 25, no. 1, pp. 36–37, 2000.
[9]
G. Yosipovitch and J. Hu, “The importance of skin pH,” Skin & Aging, vol. 11, no. 3, pp. 88–93, 2003.
[10]
G. L. Polyzois, “Color stability of facial silicone prosthetic polymers after outdoor weathering,” The Journal of Prosthetic Dentistry, vol. 82, no. 4, pp. 447–450, 1999.
[11]
U. S. Maller, K. S. Karthik, and S. V. Maller, “Maxillofacial prosthetic materials—past and present trends,” Journal of Indian Academy of Dental Specialists, vol. 1, no. 2, pp. 25–30, 2010.
[12]
R. S. Maxwell, R. Cohenour, W. Sung, D. Solyom, and M. Patel, “The effects of γ-radiation on the thermal, mechanical, and segmental dynamics of a silica filled, room temperature vulcanized polysiloxane rubber,” Polymer Degradation and Stability, vol. 80, no. 3, pp. 443–450, 2003.
[13]
P. N. Eleni, I. Katsavou, M. K. Krokida, and G. L. Polyzois, “Color stability of facial silicone prosthetic elastomers after artificial weathering,” Dental Research Journal, vol. 5, no. 2, pp. 71–79, 2008.
[14]
S. Kiat-Amnuay, P. J. Waters, D. Roberts, and L. Gettleman, “Adhesive retention of silicone and chlorinated polyethylene for maxillofacial prostheses,” Journal of Prosthetic Dentistry, vol. 99, no. 6, pp. 483–488, 2008.
[15]
Y. Gunay, C. Kurtoglu, A. Atay, B. Karayazgan, and C. C. Gurbuz, “Effect of tulle on the mechanical properties of a maxillofacial silicone elastomer,” Dental Materials Journal, vol. 27, no. 6, pp. 775–779, 2008.
[16]
J. B. Gonzalez, “Polyurethane elastomers for facial prosthesis,” The Journal of Prosthetic Dentistry, vol. 39, pp. 179–187, 1978.
[17]
S. K. Khindria, S. Bansal, and M. Kansal, “Maxillofacial prosthetic materials,” Journal of Indian Prosthodontist Society, vol. 9, no. 1, pp. 2–5, 2009.
[18]
F. P. Gasparro, M. Mitchnick, and J. F. Nash, “A review of sunscreen safety and efficacy,” Photochemistry and Photobiology, vol. 68, no. 3, pp. 243–256, 1998.
[19]
N. J. Lowe, M. A. Shaath, and M. A. Pathak, Sunscreen Development, Evaluation and Regulatory Aspects, Marcel Dekker, New York, NY, USA, 1997.
[20]
D. N. Mancuso, M. C. Goiato, and D. M. dos Santos, “Color stability after accelerated aging of two silicones, pigmented or not, for use in facial prostheses,” Brazilian Oral Research, vol. 23, no. 2, pp. 144–148, 2009.
[21]
R. Yu, A. Koran III, and R. G. Craig, “Physical properties of maxillofacial elastomers under conditions of accelerated aging,” Journal of Dental Research, vol. 59, no. 6, pp. 1041–1047, 1980.
[22]
T. Aziz, M. Waters, and R. Jagger, “Analysis of the properties of silicone rubber maxillofacial prosthetic materials,” Journal of Dentistry, vol. 31, no. 1, pp. 67–74, 2003.
[23]
Commission Internationale de l’Eclairage (CIE), Colorimetry, Official Recommendations of the International Commission on Illumination, Bureau Central de la CIE, Paris, France, 2nd edition, 1985, Publication CIE no. 15.2 (TC-1.3).
[24]
U. H. Mohite, J. L. Sandrik, M. F. Land, and G. Byrne, “Environmental factors affecting mechanical properties of facial prosthetic elastomers,” The International Journal of Prosthodontics, vol. 7, no. 5, pp. 479–486, 1994.
[25]
To International Organization for Standardization. Textiles-Tests for color fastness, Part E04: Color fastness perspiration. ISO 105-E04, 2008.
[26]
American Society for Testing and Materials, Standard Test Method for Rubber Property—Durometer Hardness. ASTM Standard D 2240, American Society for Testing and Materials, West Conshohocken, Pa, USA, 2005.
[27]
J. B. Taylor, A. L. Carrano, and S. G. Kandlikar, “Characterization of the effect of surface roughness and texture on fluid flow-past, present, and future,” International Journal of Thermal Sciences, vol. 45, no. 10, pp. 962–968, 2006.
[28]
M. Amin, M. Akbar, and S. Amin, “Hydrophobicity of silicone rubber used for outdoor insulation (an overview),” Reviews on Advanced Materials Science, vol. 16, no. 1-2, pp. 10–26, 2007.
[29]
T. Sampe, A. Ito, T. Hirayama et al., in Proceedings of the 8th Korea-Japan Joint Symposium on Electrical Discharge and High Voltage Engineering, p. 64, Chongqing, China, 2003.
[30]
W. Santawisuk, W. Kanchanavasita, C. Sirisinha, and C. Harnirattisai, “Dynamic viscoelastic properties of experimental silicone soft lining materials,” Dental Materials Journal, vol. 29, no. 4, pp. 454–460, 2010.
[31]
A. M. Guiotti, M. C. Goiato, and D. M. dos Santos, “Evaluation of the shore a hardness of silicone for facial prosthesis as to the effect of storage period and chemical disinfection,” Journal of Craniofacial Surgery, vol. 21, no. 2, pp. 323–327, 2010.
[32]
E. R. Dootz, A. Koran III, and R. G. Craig, “Physical properties of three maxillofacial materials as a function of accelerated aging,” The Journal of Prosthetic Dentistry, vol. 71, no. 4, pp. 379–383, 1994.
[33]
B. Wongpattarakij, Factorial effects on color stability of facial silicones [MSc thesis in Prosthodontics], Faculty of Dentistry, Mahidol University, Nakhon Pathom, Thailand, 2005.
[34]
Cosmesil & Esefex Series Materials—An Overview. Product Catalogue, Principality Medical Limited, South Wales, UK, 2005, http://www.cosmesil.com/, http://www.Technovent.com/.
[35]
J. F. Wolfaardt, H. D. Chandler, and B. A. Smith, “Mechanical properties of a new facial prosthetic material,” The Journal of Prosthetic Dentistry, vol. 53, no. 2, pp. 228–234, 1985.
[36]
S. Fang, Z. Yimin, S. Longquan, and P. Jingguang, “The test of the mechanical properties of SY-28. SY-20 and MDX-4-4210 silicone elastomers,” Journal of US-China Medical Science, vol. 3, pp. 36–40, 2006.
[37]
K. Stathi, P. A. Tarantili, and G. Polyzois, “The effect of accelerated ageing on performance properties of addition type silicone biomaterials,” Journal of Materials Science: Materials in Medicine, vol. 21, no. 5, pp. 1403–1411, 2010.
[38]
G. L. Polyzois, P. A. Tarantili, M. J. Frangou, and A. G. Andreopoulos, “Physical properties of a silicone prosthetic elastomer stored in simulated skin secretions,” The Journal of Prosthetic Dentistry, vol. 83, no. 5, pp. 572–577, 2000.
[39]
M. G. J. Waters, R. G. Jagger, and R. W. Winter, “Effect of surface modified fillers on the water absorption of a (RTV) silicone denture soft lining material,” Journal of Dentistry, vol. 24, no. 4, pp. 297–300, 1996.
[40]
A. Koran III, J. M. Powers, P. J. Lepeak, and R. G. Craig, “Stain resistance of maxillofacial materials,” Journal of Dental Research, vol. 58, no. 5, pp. 1455–1460, 1979.
[41]
X-Rite, “Incorporated. SP60 Series Sphere spectrophotometer,” http://www.xrite.com/documents/manuals/en/SP62-601_SP60_Series_Getting_Started_en.pdf.
[42]
H. Yanagisawa, “Discoloration of maxillofacial silicone rubber due to lipid absorption and oxidation,” Kokubyo Gakkai Zasshi, vol. 54, no. 1, pp. 190–207, 1987.
[43]
M. C. Goiato, A. A. Pesqueira, D. M. dos Santos, and S. F. D. C. Dekon, “Evaluation of hardness and surface roughness of two maxillofacial silicones following disinfection,” Brazilian Oral Research, vol. 23, no. 1, pp. 49–53, 2009.
[44]
J. E. Mark, Polymer Data Handbook, Oxford University Press, Oxford, UK, 1999.
[45]
X. Wang, S. Kumagai, and N. Yoshimura, “Fractal analysis on the recovery of contaminant properties of silicone rubber insulator against acid rain,” in Proceedings of the International Symposium on Electrical Insulating Materials, pp. 619–622, September 1998.