全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Performance of ICDAS-II Using Low-Powered Magnification with Light-Emitting Diode Headlight and Alternating Current Impedance Spectroscopy Device for Detection of Occlusal Caries on Primary Molars

DOI: 10.1155/2013/276070

Full-Text   Cite this paper   Add to My Lib

Abstract:

Early detection of occlusal caries in children is challenging for the dentists, because of the morphology of pit and fissures. The aim of this study was to compare in vitro the diagnostic performance of low-powered magnification with light-emitting diode headlight (LPMLED) using ICDAS-II criteria and AC Impedance Spectroscopy (ACIS) device, on occlusal surfaces of primary molars. The occlusal surfaces of 18 extracted primary molars were examined blindly by two examiners. The teeth were sectioned and examined under light microscopy using Downer’s histological criteria as gold standard. Good to excellent inter- and intraexaminer reproducibility, higher sensitivity, specificity, and AUC values were achieved by LPMLED at D1 threshold. Also the relationship between histology and LPMLED was statistically significant. In conclusion visual aids have the potential to improve the performance of early caries detection and clinical diagnostics in children. Despite its potential, ACIS device should be considered as an adjunct method in detecting caries on primary teeth. 1. Introduction It is well established that caries levels in industrialized nations have decreased over the last few decades with the greatest reductions occurring on the smooth and approximal surfaces [1–4]. Because of the complex occlusal anatomy, more sensitive and reproducible diagnostic tools for precise caries detection in children are needed [5]. Visual examination still is the most commonly used method for detecting dental caries, but various studies showed problems for sensitivity and reproducibility problems [6–8]. A standardized scoring system, International Caries Detection and Assessment System (ICDAS-II), has been developed for clinical practice and research to overcome these problems [9]. A complimentary approach to visual examination is to use visual aids such as low-powered magnification (dental loupes) and special headlights mounted on them. These visual aids became popular among dentists to improve precision of visual examination and for ergonomic reasons [10, 11]. Advances in caries research led novel technologies to help dentists in the diagnosis of early lesions. ACIS device (CarieScan PRO, Dundee, Scotland) is one of the recent examples of the novel technologies. This device relies on the application of a small alternating electrical signal (undetectable by the patient) through the tooth while monitoring the response at the sensor. By changing frequency of the applied signal, a spectrum is captured which provides valuable insights into the physical and chemical properties of

References

[1]  A. Hannigan, D. M. O'Mullane, D. Barry, F. Sch?fer, and A. J. Roberts, “A caries susceptibility classification of tooth surfaces by survival time,” Caries Research, vol. 34, no. 2, pp. 103–108, 2000.
[2]  T. M. Marthaler, “Changes in dental caries 1953–2003,” Caries Research, vol. 38, no. 3, pp. 173–181, 2004.
[3]  D. A. Young, “New caries detection technologies and modern caries management: merging the strategies,” General Dentistry, vol. 50, no. 4, pp. 320–331, 2002.
[4]  R. F. Sawle and R. J. Andlaw, “Has occlusal caries become more difficult to diagnose? A study comparing clinically undetected lesions in molar teeth of 14–16-year old children in 1974 and 1982,” British Dental Journal, vol. 164, no. 7, pp. 209–211, 1988.
[5]  A. Lussi and P. Francescut, “Performance of conventional and new methods for the detection of occlusal caries in deciduous teeth,” Caries Research, vol. 37, no. 1, pp. 2–7, 2003.
[6]  J. D. Bader, D. A. Shugars, and A. J. Bonito, “A systematic review of the performance of methods for identifying carious lesions,” Journal of Public Health Dentistry, vol. 62, no. 4, pp. 201–213, 2002.
[7]  Z. Zafersoy-Akarslan, H. Erten, ?. Uzun, and M. Semiz, “Reproducibility and agreement of clinical diagnosis of occlusal caries using unaided visual examination and operating microscope,” Journal of the Canadian Dental Association, vol. 75, no. 6, pp. 455–455, 2009.
[8]  A. Lussi, S. Imwinkelried, N. B. Pitts, C. Longbottom, and E. Reich, “Performance and reproducibility of a laser fluorescence system for detection of occlusal caries in vitro,” Caries Research, vol. 33, no. 4, pp. 261–266, 1999.
[9]  N. Pitts, “‘ICDAS’—an international system for caries detection and assessment being developed to facilitate caries epidemiology, research and appropriate clinical management,” Community Dental Health, vol. 21, no. 3, pp. 193–198, 2004.
[10]  D. C. van Gogswaardt, “Dental treatment methods using the loupe,” ZWR, vol. 99, no. 8, pp. 614–617, 1990.
[11]  M. J. Friedman, “Magnification in a restorative dental practice: from loupes to microscopes,” Compendium of Continuing Education in Dentistry, vol. 25, no. 1, pp. 48, 50, 53–55, 2004.
[12]  M. C. Downer, “Concurrent validity of an epidemiological diagnostic system for caries with the histological appearance of extracted teeth as validating criterion,” Caries Research, vol. 9, no. 3, pp. 231–246, 1975.
[13]  I. L. Fleiss, Statistical Methods for Rates and Proportions, pp 212–225, Wiley, New York, NY, USA, 2nd edition, 1981.
[14]  H. M. Htoon, L. L. Peng, and C. Y. Huak, “Assessment criteria for compliance with oral hygiene: application of ROC analysis,” Oral Health & Preventive Dentistry, vol. 5, no. 2, pp. 83–88, 2007.
[15]  N. A. Obuchowski, “Receiver operating characteristic curves and their use in radiology,” Radiology, vol. 229, no. 1, pp. 3–8, 2003.
[16]  A. Jablonski-Momeni, V. Stachniss, D. N. Ricketts, M. Heinzel-Gutenbrunner, and K. Pieper, “Reproducibility and accuracy of the ICDAS-II for detection of occlusal caries in vitro,” Caries Research, vol. 42, no. 2, pp. 79–87, 2008.
[17]  J. A. Rodrigues, I. Hug, M. B. Diniz, and A. Lussi, “Performance of fluorescence methods, radiographic examination and ICDAS II on occlusal surfaces in vitro,” Caries Research, vol. 42, no. 4, pp. 297–304, 2008.
[18]  R. P. Shellis, “Relationship between human enamel structure and the formation of caries-like lesions in vitro,” Archives of Oral Biology, vol. 29, no. 12, pp. 975–981, 1984.
[19]  E. C. Sheehy, S. R. Brailsford, E. A. M. Kidd, D. Beighton, and L. Zoitopoulos, “Comparison between visual examination and a laser fluorescence system for in vivo diagnosis of occlusal caries,” Caries Research, vol. 35, no. 6, pp. 421–426, 2001.
[20]  M. B. Diniz, J. D. A. Rodrigues, A. B. D. Paula, and R. D. C. L. Cordeiro, “In vivo evaluation of laser fluorescence performance using different cut-off limits for occlusal caries detection,” Lasers in Medical Science, vol. 24, no. 3, pp. 295–300, 2009.
[21]  J. A. Rodrigues, M. B. Diniz, M. B. Josgrilberg, and R. C. L. Cordeiro, “In vitro comparison of laser fluorescence performance with visual examination for detection of occlusal caries in permanent and primary molars,” Lasers in Medical Science, vol. 24, no. 4, pp. 501–506, 2009.
[22]  A. Jablonski-Momeni, D. N. J. Ricketts, M. Heinzel-Gutenbrunner, R. Stoll, V. Stachniss, and K. Pieper, “Impact of scoring single or multiple occlusal lesions on estimates of diagnostic accuracy of the visual ICDAS-II system,” International Journal of Dentistry, vol. 2009, Article ID 798283, 7 pages, 2009.
[23]  J. Kühnisch, S. Berger, I. Goddon, H. Senkel, N. Pitts, and R. Heinrich-Weltzien, “Occlusal caries detection in permanent molars according to WHO basic methods, ICDAS II and laser fluorescence measurements,” Community Dentistry and Oral Epidemiology, vol. 36, no. 6, pp. 475–484, 2008.
[24]  A. I. Ismail, W. Sohn, M. Tellez et al., “The International Caries Detection and Assessment System (ICDAS): an integrated system for measuring dental caries: methods,” Community Dentistry and Oral Epidemiology, vol. 35, no. 3, pp. 170–178, 2007.
[25]  K. R. Ekstrand, S. Martignon, D. J. N. Ricketts, and V. Qvist, “Detection and activity assessment of primary coronal caries lesions: a methodologic study,” Operative Dentistry, vol. 32, no. 3, pp. 225–235, 2007.
[26]  A. H. Forgie, C. M. Pine, and N. B. Pitts, “The use of magnification in a preventive approach to caries detection,” Quintessence International, vol. 33, no. 1, pp. 13–16, 2002.
[27]  P. Mitropoulos, C. Rahiotis, A. Kakaboura, and G. Vougiouklakis, “The impact of magnification on occlusal caries diagnosis with implementation of the ICDAS II criteria,” Caries Research, vol. 46, no. 1, pp. 82–86, 2012.
[28]  A. F. Hall, U. Kaczmarek, N. B. Pitts et al., “Intra-and inter-examiner repeatability of ac-Impedance Spectroscopy to detect sound and caries sites in vivo,” Caries Research, vol. 41, no. 4, p. 296, 2007.
[29]  M. M. Braga, F. M. Mendes, S. Martignon, D. N. J. Ricketts, and K. R. Ekstrand, “In vitro comparison of nyvad's system and icdas-ii with lesion activity assessment for evaluation of severity and activity of occlusal caries lesions in primary teeth,” Caries Research, vol. 43, no. 5, pp. 405–412, 2009.
[30]  N. B. Pitts, C. Longbottoma, A. F. Hall et al., “Diagnostic accuracy of an optimised ac impedance device to aid caries detection and monitoring,” Caries Research, vol. 42, no. 3, p. 211, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133