This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These proteins and their respective null mice and human mutations are also evaluated to shed light on the mechanisms that cause nonsyndromic enamel malformations termed amelogenesis imperfecta. Pertinent controversies are addressed. For example, do any of these proteins have a critical function in addition to their role in enamel development? Does amelogenin initiate crystallite growth, does it inhibit crystallite growth in width and thickness, or does it do neither? Detailed examination of the null mouse literature provides unmistakable clues and/or answers to these questions, and this data is thoroughly analyzed. Striking conclusions from this analysis reveal that widely held paradigms of enamel formation are inadequate. The final section of this review weaves the recent data into a plausible new mechanism by which these enamel matrix proteins support and promote enamel development. 1. Introduction Tooth development is a highly orchestrated process that begins with the defined placement of individual teeth of specific shapes and sizes within the jaw. Precise signaling pathways to and from epithelial and mesenchymal cells are required for each tooth to initiate and continue along its developmental path [1, 2]. The complexity of these pathways is reflected by their high rate of incompletion. Deficiency of third molars, second premolars, and lateral incisors is common. The reported incidence of selective agenesis varies from 1.6% to 9.6% for all but third molars. Agenesis of third molars occurs in approximately 20% of the World’s population [3]. Therefore, the study of tooth development has taught us how genes and tissues interact to form complex dental structures that each occupies a prespecified place within the jaw and has taught us about what can go wrong with the intricate developmental signaling pathways. Teeth are composed of three different mineralized tissues: cementum, dentin, and enamel. Cementum is found along the tooth root and primarily serves to hold the tooth in place by binding collagen fibers (Sharpey’s fibers) that are continuous with the principal fibers of
References
[1]
M. Mina and E. J. Kollar, “The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium,” Archives of Oral Biology, vol. 32, no. 2, pp. 123–127, 1987.
[2]
I. Thesleff, A. Vaahtokari, P. Kettunen, and T. Aberg, “Epithelial-mesenchymal signaling during tooth development,” Connective Tissue Research, vol. 32, no. 1–4, pp. 9–15, 1995.
[3]
A. Tucker and P. Sharpe, “The cutting-edge of mammalian development; how the embryo makes teeth,” Nature Reviews Genetics, vol. 5, no. 7, pp. 499–508, 2004.
[4]
A. Nanci, Ten Cate's Oral Histology, Development, Structure, and Function, Mosby, St. Louis, Mo, USA, 2003.
[5]
A. S. Cole and J. E. Eastoe, Eds., Biochemistry and Oral Biology, Butterworth, London, UK, 1988.
[6]
M. Deakins and J. F. Volker, “Amount of organic matter in enamel from several types of human teeth,” Journal of Dental Research, vol. 20, no. 2, pp. 117–121, 1941.
[7]
M. L. LeFevre and R. S. Manly, “Moisture, inorganic and organic contents of enamel and dentin from carious teeth,” Journal of the American Dental Association, vol. 24, pp. 233–242, 1938.
[8]
M. Sponheimer, Z. Alemseged, T. E. Cerling, F. E. Grine, W. H. Kimbel, et al., “Isotopic evidence of early hominin diets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 26, pp. 10513–10518, 2013.
[9]
J. P. Simmer and A. G. Fincham, “Molecular mechanisms of dental enamel formation,” Critical Reviews in Oral Biology and Medicine, vol. 6, no. 2, pp. 84–108, 1995.
[10]
J. D. Bortlett and J. P. Simmer, “Proteinases in developing dental enamel,” Critical Reviews in Oral Biology and Medicine, vol. 10, no. 4, pp. 425–441, 1999.
[11]
C. E. Smith, “Cellular and chemical events during enamel maturation,” Critical Reviews in Oral Biology and Medicine, vol. 9, no. 2, pp. 128–161, 1998.
[12]
T. Uchida, T. Tanabe, M. Fukae, and M. Shimizu, “Immunocytochemical and immunochemical detection of a 32 kDa nonamelogenin and related proteins in porcine tooth germs,” Archives of Histology and Cytology, vol. 54, pp. 527–538, 1991.
[13]
J. C.-C. Hu, Y.-H. P. Chun, T. Al Hazzazzi, and J. P. Simmer, “Enamel formation and amelogenesis imperfecta,” Cells Tissues Organs, vol. 186, no. 1, pp. 78–85, 2007.
[14]
J. D. Bartlett, Z. Skobe, A. Nanci, and C. E. Smith, “Matrix metalloproteinase 20 promotes a smooth enamel surface, a strong dentino-enamel junction, and a decussating enamel rod pattern,” European Journal of Oral Sciences, vol. 119, supplement 1, pp. 199–205, 2011.
[15]
J. P. Simmer, Y. Hu, R. Lertlam, Y. Yamakoshi, and J. C.-C. Hu, “Hypomaturation enamel defects in Klk4 knockout/LacZ knock in mice,” Journal of Biological Chemistry, vol. 284, no. 28, pp. 19110–19121, 2009.
[16]
C. W. Gibson, Z.-A. Yuan, B. Hall et al., “Amelogenin-deficient mice display an amelogenesis imperfecta phenotype,” Journal of Biological Chemistry, vol. 276, no. 34, pp. 31871–31875, 2001.
[17]
S. Fukumoto, T. Kiba, B. Hall et al., “Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts,” Journal of Cell Biology, vol. 167, no. 5, pp. 973–983, 2004.
[18]
J. C.-C. Hu, Y. Hu, C. E. Smith et al., “Enamel defects and ameloblast-specific expression in Enam knock-out/lacZ knock-in mice,” Journal of Biological Chemistry, vol. 283, no. 16, pp. 10858–10871, 2008.
[19]
J. D. Bartlett and C. E. Smith, “Modulation of cell-cell junctional complexes by matrix metalloproteinases,” Journal of Dental Research, vol. 92, no. 1, pp. 10–17, 2013.
[20]
H. C. Slavkin, Developmental Craniofacial Biology, Lea and Febiger, Philadelphia, Pa, USA, 1979.
[21]
I. A. Mjor and F. Ole, Human Oral Embryology and Histology, Munksgaard, Copenhagen, Denmark, 1986.
[22]
E. R?nnholm, “An electron microscopic study of the amelogenesis in human teeth. I. The fine structure of the ameloblasts,” Journal of Ultrasructure Research, vol. 6, no. 2, pp. 229–248, 1962.
[23]
G. Daculsi, J. Menanteau, L. M. Kerebel, and D. Mitre, “Length and shape of enamel crystals,” Calcified Tissue International, vol. 36, no. 5, pp. 550–555, 1984.
[24]
E. J. Reith and M. H. Ross, “Morphological evidence for the presence of contractile elements in secretory ameloblasts of the rat,” Archives of Oral Biology, vol. 18, no. 3, pp. 445–448, 1973.
[25]
A. Boyde, “Enamel,” in Handbook of Microscopic Anatomy, A. Oksche and L. Vollrath, Eds., pp. 309–473, Springer, Berlin, Germany, 1989.
[26]
G. Daculsi and B. Kerebel, “High-resolution electron microscope study of human enamel crystallites: size, shape, and growth,” Journal of Ultrastructure Research, vol. 65, no. 2, pp. 163–172, 1978.
[27]
F. J. G. Cuisinier, P. Steuer, B. Senger, J. C. Voegel, and R. M. Frank, “Human amelogenesis I: high resolution electron microscopy study of ribbon- like crystals,” Calcified Tissue International, vol. 51, no. 4, pp. 259–268, 1992.
[28]
E. Kallenbach, “Fine structure of secretory ameloblasts in the kitten,” American Journal of Anatomy, vol. 148, no. 4, pp. 479–511, 1977.
[29]
D. F. Travis and M. J. Glimcher, “The structure and organization of, and the relationship between the organic matrix and the inorganic crystals of embryonic bovine enamel,” The Journal of Cell Biology, vol. 23, pp. 447–497, 1964.
[30]
M. Wakita, H. Tsuchiya, T. Gunji, and S. Kobayashi, “Three-dimensional structure of Tomes' processes and enamel prism formation in the kitten,” Archivum Histologicum Japonicum, vol. 44, no. 3, pp. 285–297, 1981.
[31]
H. J. Orams, “An examination of the prism core, prism sheath and interprismatic substance using the electon microscope,” Australian Dental Journal, vol. 11, no. 2, pp. 93–104, 1966.
[32]
C. Robinson, J. Kirkham, J. A. Weatherell, A. Richards, K. Josephsen, and O. Fejerskov, “Mineral and protein concentrations in enamel of the developing permanent porcine dentition,” Caries Research, vol. 22, no. 6, pp. 321–326, 1988.
[33]
J. E. Eastoe, “Organic matrix of tooth enamel,” Nature, vol. 187, no. 4735, pp. 411–412, 1960.
[34]
J. E. Eastoe, “The amino acid composition of proteins from the oral tissues-II. The matrix proteins in dentine and enamel from developing human deciduous teeth,” Archives of Oral Biology, vol. 8, no. 5, pp. 633–652, 1963.
[35]
R. C. Burgess and C. M. Maclaren, “Proteins in developing bovine enamel,” in Tooth Enamel I, M. V. Stack and W. FR, Eds., pp. 74–82, John Wright & Sons LTD, Bristol, England, 1965.
[36]
M. Fukae and M. Shimizu, “Studies on the proteins of developing bovine enamel,” Archives of Oral Biology, vol. 19, no. 5, pp. 381–386, 1974.
[37]
C. Robinson, N. R. Lowe, and J. A. Weatherell, “Changes in amino acid composition of developing rat incisor enamel,” Calcified Tissue International, vol. 23, no. 1, pp. 19–31, 1977.
[38]
C. M. Overall and H. Limeback, “Identification and characterization of enamel proteinases isolated from developing enamel. Amelogeninolytic serine proteinases are associated with enamel maturation in pig,” Biochemical Journal, vol. 256, no. 3, pp. 965–972, 1988.
[39]
P. K. DenBesten and L. M. Heffernan, “Separation by polyacrylamide gel electrophoresis of multiple proteases in rat and bovine enamel,” Archives of Oral Biology, vol. 34, no. 6, pp. 399–404, 1989.
[40]
C. E. Smith, S. Borenstein, A. Fazel, and A. Nanci, “In vitro stidies of the proteases which degrade amelogenenins in developing rat incisor enamel,” in Tooth Enamel V, R. W. F, Ed., pp. 286–293, Florence Publishers., Yokohama, Japan, 1989.
[41]
C. E. Smith, M. Issid, H. C. Margolis, and E. C. Moreno, “Developmental changes in the pH of enamel fluid and its effects on matrix-resident proteinases,” Advances in Dental Research, vol. 10, no. 2, pp. 159–169, 1996.
[42]
T. Tanabe, M. Fukae, T. Uchida, and M. Shimizu, “The localization and characterization of proteinases for the initial cleavage of porcine amelogenin,” Calcified Tissue International, vol. 51, no. 3, pp. 213–217, 1992.
[43]
T. Tanabe, M. Fukae, and M. Shimizu, “Degradation of enamelins by proteinases found in porcine secretory enamel in vitro,” Archives of Oral Biology, vol. 39, no. 4, pp. 277–281, 1994.
[44]
C. Bègue-Kirn, P. H. Krebsbach, J. D. Bartlett, and W. T. Butler, “Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation,” European Journal of Oral Sciences, vol. 106, no. 5, pp. 963–970, 1998.
[45]
J. C. C. Hu, X. Sun, C. Zhang, S. Liu, J. D. Bartlett, and J. P. Simmer, “Enamelysin and kallikrein-4 mRNA expression in developing mouse molars,” European Journal of Oral Sciences, vol. 110, no. 4, pp. 307–315, 2002.
[46]
J. D. Bartlett, J. P. Simmer, J. Xue, H. C. Margolis, and E. C. Moreno, “Molecular cloning and mRNA tissue distribution of a novel matrix metalloproteinase isolated from porcine enamel organ,” Gene, vol. 183, no. 1-2, pp. 123–128, 1996.
[47]
J. P. Simmer, M. Fukae, T. Tanabe et al., “Purification, characterization, and cloning of enamel matrix serine proteinase 1,” Journal of Dental Research, vol. 77, no. 2, pp. 377–386, 1998.
[48]
M. Fukae, T. Tanabe, T. Uchida et al., “Enamelysin (matrix metalloproteinase-20): localization in the developing tooth and effects of pH and calcium on amelogenin hydrolysis,” Journal of Dental Research, vol. 77, no. 8, pp. 1580–1588, 1998.
[49]
E. Llano, A. M. Pendás, V. Kn?uper et al., “Identification and structural and functional characterization of human enamelysin (MMP-20),” Biochemistry, vol. 36, no. 49, pp. 15101–15108, 1997.
[50]
G. M. Grant, T. A. Giambernardi, A. M. Grant, and R. J. Klebe, “Overview of expression of matrix metalloproteinases (MMP-17, MMP-18, and MMP-20) in cultured human cells,” Matrix Biology, vol. 18, no. 2, pp. 145–148, 1999.
[51]
T. Takata, M. Zhao, H. Nikai, T. Uchida, and T. Wang, “Ghost cells in calcifying odontogenic cyst express enamel-related proteins,” Histochemical Journal, vol. 32, no. 4, pp. 223–229, 2000.
[52]
T. Takata, M. Zhao, T. Uchida et al., “Immunohistochemical detection and distribution of enamelysin (MMP-20) in human odontogenic tumors,” Journal of Dental Research, vol. 79, no. 8, pp. 1608–1613, 2000.
[53]
A. V??n?nen, R. Srinivas, M. Parikka et al., “Expression and regulation of MMP-20 in human tongue carcinoma cells,” Journal of Dental Research, vol. 80, no. 10, pp. 1884–1889, 2001.
[54]
A. Kimura, T. Kihara, R. Ohkura, K. Ogiwara, and T. Takahashi, “Localization of bradykinin B2 receptor in the follicles of porcine ovary and increased expression of matrix metalloproteinase-3 and -20 in cultured granulosa cells by bradykinin treatment,” Biology of Reproduction, vol. 65, no. 5, pp. 1462–1470, 2001.
[55]
J. D. Bartlett, “Matrix metalloproteinase-20/enamelysin,” in Handbook of Proteolytic Enzymes, N. D. Rawlings and G. S. Salvesen, Eds., pp. 835–840, Academic Press, Oxford, UK, 2013.
[56]
B. E. Turk, D. H. Lee, Y. Yamakoshi et al., “MMP-20 is predominately a tooth-specific enzyme with a deep catalytic pocket that hydrolyzes type V collagen,” Biochemistry, vol. 45, no. 12, pp. 3863–3874, 2006.
[57]
R. W. Meredith, J. Gatesy, J. Cheng, and M. S. Springer, “Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales,” Proceedings of The Royal Society, vol. 278, no. 1708, pp. 993–1002, 2011.
[58]
Y. Yamada, Y. Yamakoshi, R. F. Gerlach, C. C. Hu, K. Matsumoto, et al., “Purification and characterization of enamelysin from secretory stage pig enamel,” Archives of Comparative Biology of Tooth Enamel, vol. 8, pp. 21–25, 2003.
[59]
P. K. den Besten, J. S. Punzi, and W. Li, “Purification and sequencing of a 21?kDa and 25?kDa bovine enamel metalloproteinase,” European Journal of Oral Sciences, vol. 106, no. 1, pp. 345–349, 1998.
[60]
W. Li, D. Machule, C. Gao, and P. K. DenBesten, “Activation of recombinant bovine matrix metalloproteinase-20 and its hydrolysis of two amelogenin oligopeptides,” European Journal of Oral Sciences, vol. 107, no. 5, pp. 352–359, 1999.
[61]
O. H. Ryu, A. G. Fincham, C.-C. Hu et al., “Characterization of recombinant pig enamelysin activity and cleavage of recombinant pig and mouse amelogenins,” Journal of Dental Research, vol. 78, no. 3, pp. 743–750, 1999.
[62]
C. Caron, J. Xue, and J. D. Bartlett, “Expression and localization of membrane type 1 matrix metalloproteinase in tooth tissues,” Matrix Biology, vol. 17, no. 7, pp. 501–511, 1998.
[63]
H. Palosaari, Y. Ding, M. Larmas et al., “Regulation and interactions of MT1-MMP and MMP-20 in human odontoblasts and pulp tissue in vitro,” Journal of Dental Research, vol. 81, no. 5, pp. 354–359, 2002.
[64]
J. D. Bartlett, O. H. Ryu, J. Xue, J. P. Simmer, and H. C. Margolis, “Enamelysin mRNA displays a developmentally defined pattern of expression and encodes a protein which degrades amelogenin,” Connective Tissue Research, vol. 39, no. 1–3, pp. 101–109, 1998.
[65]
J. Moradian-Oldak, I. Jimenez, D. Maltby, and A. G. Fincham, “Controlled proteolysis of amelogenins reveals exposure of both carboxy- and amino-terminal regions,” Biopolymers, vol. 58, no. 7, pp. 606–616, 2001.
[66]
T. Nagano, A. Kakegawa, Y. Yamakoshi et al., “Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences,” Journal of Dental Research, vol. 88, no. 9, pp. 823–828, 2009.
[67]
T. Iwata, Y. Yamakoshi, J. C.-C. Hu et al., “Processing of ameloblastin by MMP-20,” Journal of Dental Research, vol. 86, no. 2, pp. 153–157, 2007.
[68]
Y.-H. P. Chun, Y. Yamakoshi, F. Yamakoshi et al., “Cleavage site specificity of MMP-20 for secretory-stage ameloblastin,” Journal of Dental Research, vol. 89, no. 8, pp. 785–790, 2010.
[69]
J. C.-C. Hu and Y. Yamakoshi, “Enamelin and autosomal-dominant amelogenesis imperfecta,” Critical Reviews in Oral Biology and Medicine, vol. 14, no. 6, pp. 387–398, 2003.
[70]
Y. Yamakoshi, J. C.-C. Hu, M. Fukae, F. Yamakoshi, and J. P. Simmer, “How do enamelysin and kallikrein 4 process the 32-kDa enamelin?” European Journal of Oral Sciences, vol. 114, no. 1, pp. 45–51, 2006.
[71]
O. Ryu, J. C. C. Hu, Y. Yamakoshi et al., “Porcine kallikrein-4 activation, glycosylation, activity, and expression in prokaryotic and eukaryotic hosts,” European Journal of Oral Sciences, vol. 110, no. 5, pp. 358–365, 2002.
[72]
Y. Yamakoshi, J. C.-C. Hu, T. Iwata, K. Kobayashi, M. Fukae, and J. P. Simmer, “Dentin sialophosphoprotein is processed by MMP-2 and MMP-20 in vitro and in vivo,” Journal of Biological Chemistry, vol. 281, no. 50, pp. 38235–38243, 2006.
[73]
J. D. Bartlett, Y. Yamakoshi, J. P. Simmer, A. Nanci, and C. E. Smith, “MMP20 cleaves E-cadherin and influences ameloblast development,” Cells Tissues Organs, vol. 194, no. 2–4, pp. 222–226, 2011.
[74]
J. O. Stracke, A. J. Fosang, K. Last et al., “Matrix metalloproteinases 19 and 20 cleave aggrecan and cartilage oligomeric matrix protein (COMP),” FEBS Letters, vol. 478, no. 1-2, pp. 52–56, 2000.
[75]
A. V??n?nen, L. Tj?derhane, L. Eklund et al., “Expression of collagen XVIII and MMP-20 in developing teeth and odontogenic tumors,” Matrix Biology, vol. 23, no. 3, pp. 153–161, 2004.
[76]
J. Caterina, J. Shi, S. Krakora et al., “Isolation, characterization, and chromosomal location of the mouse enamelysin gene,” Genomics, vol. 62, no. 2, pp. 308–311, 1999.
[77]
J. J. Caterina, Z. Skobe, J. Shi et al., “Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype,” Journal of Biological Chemistry, vol. 277, no. 51, pp. 49598–49604, 2002.
[78]
J. D. Bartlett, E. Beniash, D. H. Lee, and C. E. Smith, “Decreased mineral content in MMP-20 null mouse enamel is prominent during the maturation stage,” Journal of Dental Research, vol. 83, no. 12, pp. 909–913, 2004.
[79]
A. Hartsock and W. J. Nelson, “Adherens and tight junctions: structure, function and connections to the actin cytoskeleton,” Biochimica et Biophysica Acta, vol. 1778, no. 3, pp. 660–669, 2008.
[80]
J. D. Bartlett, J. M. Dobeck, C. E. Tye et al., “Targeted p120-catenin ablation disrupts dental enamel development,” PLoS One, vol. 5, no. 9, Article ID e12703, 2010.
[81]
J.-L. Fausser, O. Schlepp, D. Aberdam, G. Meneguzzi, J. V. Ruch, and H. Lesot, “Localization of antigens associated with adherens junctions, desmosomes, and hemidesmosomes during murine molar morphogenesis,” Differentiation, vol. 63, no. 1, pp. 1–11, 1998.
[82]
R. Heymann, I. About, U. Lendahl, J.-C. Franquin, B. ?brink, and T. A. Mitsiadis, “E- and N-cadherin distribution in developing and functional human teeth under normal and pathological conditions,” American Journal of Pathology, vol. 160, no. 6, pp. 2123–2133, 2002.
[83]
N. Obara, Y. Suzuki, Y. Nagai, and M. Takeda, “Expression of E- and P-cadherin during tooth morphogenesis and cytodifferentiation of ameloblasts,” Anatomy and Embryology, vol. 197, no. 6, pp. 469–475, 1998.
[84]
J. Palacios, N. Benito, R. Berraquero, A. Pizarro, A. Cano, and C. Gamallo, “Differential spatiotemporal expression of E- and P-cadherin during mouse tooth development,” International Journal of Developmental Biology, vol. 39, no. 4, pp. 663–666, 1995.
[85]
B. C. Sorkin, M. Y. Wang, J. M. Dobeck, K. L. Albergo, and Z. Skobe, “The cadherin-catenin complex is expressed alternately with the adenomatous polyposis coli protein during rat incisor amelogenesis,” Journal of Histochemistry and Cytochemistry, vol. 48, no. 3, pp. 397–406, 2000.
[86]
C. Terling, R. Heymann, B. Rozell, B. ?brink, and J. Wroblewski, “Dynamic expression of E-cadherin in ameloblasts and cementoblasts in mice,” European Journal of Oral Sciences, vol. 106, no. 1, pp. 137–142, 1998.
[87]
H. G. Munshi and M. S. Stack, “Reciprocal interactions between adhesion receptor signaling and MMP regulation,” Cancer and Metastasis Reviews, vol. 25, no. 1, pp. 45–56, 2006.
[88]
J. K. McGuire, Q. Li, and W. C. Parks, “Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium,” American Journal of Pathology, vol. 162, no. 6, pp. 1831–1843, 2003.
[89]
A. Lochter, S. Galosy, J. Muschler, N. Freedman, Z. Werb, and M. J. Bissell, “Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells,” Journal of Cell Biology, vol. 139, no. 7, pp. 1861–1872, 1997.
[90]
B. Fingleton, C. C. Lynch, T. Vargo-Gogola, and L. M. Matrisian, “Cleavage of E-cadherin by matrix metalloproteinase-7 promotes cellular proliferation in nontransformed cell lines via activation of RhoA,” Journal of Oncology, vol. 2010, Article ID 530745, 11 pages, 2010.
[91]
J. Sancéau, S. Truchet, and B. Bauvois, “Matrix metalloproteinase-9 silencing by RNA interference triggers the migratory-adhesive switch in Ewing's sarcoma cells,” Journal of Biological Chemistry, vol. 278, no. 38, pp. 36537–36546, 2003.
[92]
K. D. C. Dahl, J. Symowicz, Y. Ning et al., “Matrix metalloproteinase 9 is a mediator of epidermal growth factor-dependent E-cadherin loss in ovarian carcinoma cells,” Cancer Research, vol. 68, no. 12, pp. 4606–4613, 2008.
[93]
J. Chen, Y. Lan, J.-A. Baek, Y. Gao, and R. Jiang, “Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development,” Developmental Biology, vol. 334, no. 1, pp. 174–185, 2009.
[94]
C. E. Smith, A. S. Richardson, Y. Hu, J. D. Bartlett, J. C.-C. Hu, and J. P. Simmer, “Effect of kallikrein 4 loss on enamel mineralization: comparison with mice lacking matrix metalloproteinase 20,” Journal of Biological Chemistry, vol. 286, no. 20, pp. 18149–18160, 2011.
[95]
Y. Hu, J. C.-C. Hu, C. E. Smith, J. D. Bartlett, and J. P. Simmer, “Kallikrein-related peptidase 4, matrix metalloproteinase 20, and the maturation of murine and porcine enamel,” European Journal of Oral Sciences, vol. 119, no. 1, pp. 217–225, 2011.
[96]
C. J. Witkop Jr., “Amelogenesis imperfecta, dentinogenesis imperfecta and dentin dysplasia revisited: problems in classification,” Journal of Oral Pathology, vol. 17, no. 9-10, pp. 547–553, 1988.
[97]
S. Becerik, D. Cogulu, G. Emingil, T. Han, P. S. Hart, and T. C. Hart, “Exclusion of candidate genes in seven Turkish families with autosomal recessive amelogenesis imperfecta,” American Journal of Medical Genetics A, vol. 149, no. 7, pp. 1392–1398, 2009.
[98]
S.-K. Lee, F. Seymen, H.-Y. Kang et al., “MMP20 hemopexin domain mutation in amelogenesis imperfecta,” Journal of Dental Research, vol. 89, no. 1, pp. 46–50, 2010.
[99]
B. Gasse, E. Karayigit, E. Mathieu, S. Jung, A. Garret, et al., “Homozygous and compound heterozygous MMP20 mutations in amelogenesis imperfecta,” Journal of Dental Research, vol. 92, no. 7, pp. 598–603, 2013.
[100]
J.-W. Kim, J. P. Simmer, T. C. Hart et al., “MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta,” Journal of Medical Genetics, vol. 42, no. 3, pp. 271–275, 2005.
[101]
D. Ozdemir, P. S. Hart, O. H. Ryu et al., “MMP20 active-site mutation in hypomaturation amelogenesis imperfecta,” Journal of Dental Research, vol. 84, no. 11, pp. 1031–1035, 2005.
[102]
P. Papagerakis, H.-K. Lin, K. Y. Lee et al., “Premature stop codon in MMP20 causing amelogenesis imperfecta,” Journal of Dental Research, vol. 87, no. 1, pp. 56–59, 2008.
[103]
S. K. Wang, Y. Hu, J. P. Simmer, F. Seymen, N. M. Estrella, et al., “Novel KLK4 and MMP20 mutations discovered by whole-exome sequencing,” Journal of Dental Research, vol. 92, no. 3, pp. 266–271, 2013.
[104]
P. S. Nelson, L. Gan, C. Ferguson et al., “Molecular cloning and characterization of prostase, an androgen-regulated serine protease with prostate-restricted expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 6, pp. 3114–3119, 1999.
[105]
G. M. Yousef, C. V. Obiezu, L.-Y. Luo, M. H. Black, and E. P. Diamandis, “Prostase/KLK-L1 is a new member of the human kallikrein gene family, is expressed in prostate and breast tissues, and is hormonally regulated,” Cancer Research, vol. 59, no. 17, pp. 4252–4256, 1999.
[106]
M. Fukae, T. Tanabe, and M. Shimizu, “Proteolytic enzyme activity in porcine immature enamel,” Tsurumi Shigaku, vol. 3, no. 1, pp. 15–17, 1977.
[107]
M. Shimizu, T. Tanabe, and M. Fukae, “Proteolytic enzyme in porcine immature enamel,” Journal of Dental Research, vol. 58, pp. 782–789, 1979.
[108]
J. C.-C. Hu, O. H. Ryu, J. J. Chen et al., “Localization of EMSP1 expression during tooth formation and cloning of mouse cDNA,” Journal of Dental Research, vol. 79, no. 1, pp. 70–76, 2000.
[109]
J. C.-C. Hu, C. Zhang, X. Sun et al., “Characterization of the mouse and human PRSS17 genes, their relationship to other serine proteases, and the expression of PRSS17 in developing mouse incisors,” Gene, vol. 251, no. 1, pp. 1–8, 2000.
[110]
J. P. Simmer, A. S. Richardson, C. E. Smith, Y. Hu, and J. C.-C. Hu, “Expression of kallikrein-related peptidase 4 in dental and non-dental tissues,” European Journal of Oral Sciences, vol. 119, no. 1, pp. 226–233, 2011.
[111]
J. P. Simmer, “Kallekrein-related peptidase-4,” in Handbook of Proteolytic Enzymes, N. D. Rawlings and G. S. Salvesen, Eds., pp. 2768–2772, Academic Press, Oxford, UK, 2013.
[112]
M. Debela, V. Magdolen, V. Grimminger et al., “Crystal structures of human tissue kallikrein 4: activity modulation by a specific zinc binding site,” Journal of Molecular Biology, vol. 362, no. 5, pp. 1094–1107, 2006.
[113]
?. Lundwall and M. Brattsand, “Kallikrein-related peptidases,” Cellular and Molecular Life Sciences, vol. 65, no. 13, pp. 2019–2038, 2008.
[114]
Y. Yamakoshi, A. S. Richardson, S. M. Nunez et al., “Enamel proteins and proteases in Mmp20 and Klk4 null and double-null mice,” European Journal of Oral Sciences, vol. 119, no. 1, pp. 206–216, 2011.
[115]
C. E. Tye, C. T. Pham, J. P. Simmer, and J. D. Bartlett, “DPPI may activate KLK4 during enamel formation,” Journal of Dental Research, vol. 88, no. 4, pp. 323–327, 2009.
[116]
M. Matsumura, A. S. Bhatt, D. Andress et al., “Substrates of the prostate-specific serine protease prostase/KLK4 defined by positional-scanning peptide libraries,” Prostate, vol. 62, no. 1, pp. 1–13, 2005.
[117]
T. K. Takayama, B. A. McMullen, P. S. Nelson, M. Matsumura, and K. Fujikawa, “Characterization of hK4 (prostase), a prostate-specific serine protease: activation of the precursor of prostate specific antigen (pro-PSA) and single-chain urokinase-type plasminogen activator and degradation of prostatic acid phosphatase,” Biochemistry, vol. 40, no. 50, pp. 15341–15348, 2001.
[118]
C. Becker-Pauly, M. H?wel, T. Walker et al., “The α and β subunits of the metalloprotease meprin are expressed in separate layers of human epidermis, revealing different functions in keratinocyte proliferation and differentiation,” Journal of Investigative Dermatology, vol. 127, no. 5, pp. 1115–1125, 2007.
[119]
N. Beaufort, M. Debela, S. Creutzburg et al., “Interplay of human tissue kallikrein 4 (hK4) with the plasminogen activation system: hK4 regulates the structure and functions of the urokinase-type plasminogen activator receptor (uPAR),” Biological Chemistry, vol. 387, no. 2, pp. 217–222, 2006.
[120]
C. V. Obiezu, I. P. Michael, M. A. Levesque, and E. P. Diamandis, “Human kallikrein 4: enzymatic activity, inhibition, and degradation of extracellular matrix proteins,” Biological Chemistry, vol. 387, no. 6, pp. 749–759, 2006.
[121]
H. Yoon, G. Laxmikanthan, J. Lee et al., “Activation profiles and regulatory cascades of the human kallikrein-related peptidases,” Journal of Biological Chemistry, vol. 282, no. 44, pp. 31852–31864, 2007.
[122]
A. J. Ramsay, Y. Dong, M. L. Hunt et al., “Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs): KLK4 and PAR-2 are co-expressed during prostate cancer progression,” Journal of Biological Chemistry, vol. 283, no. 18, pp. 12293–12304, 2008.
[123]
G. J. Mize, W. Wang, and T. K. Takayama, “Prostate-specific kallikreins-2 and -4 enhance the proliferation of DU-145 prostate cancer cells through protease-activated receptors-1 and -2,” Molecular Cancer Research, vol. 6, no. 6, pp. 1043–1051, 2008.
[124]
V. Gratio, N. Beaufort, L. Seiz et al., “Kallikrein-related peptidase 4: a new activator of the aberrantly expressed protease-activated receptor 1 in colon cancer cells,” American Journal of Pathology, vol. 176, no. 3, pp. 1452–1461, 2010.
[125]
W. Wang, G. J. Mize, X. Zhang, and T. K. Takayama, “Kallikrein-related peptidase-4 initiates tumor-stroma interactions in prostate cancer through protease-activated receptor-1,” International Journal of Cancer, vol. 126, no. 3, pp. 599–610, 2010.
[126]
J. P. Simmer, A. S. Richardson, Y. Y. Hu, C. E. Smith, and J. Ching-Chun Hu, “A post-classical theory of enamel biomineralization... and why we need one,” International Journal of Oral Science, vol. 4, no. 3, pp. 129–134, 2012.
[127]
C.-C. Hu, T. C. Hart, B. R. Dupont et al., “Cloning human enamelin cDNA, chromosomal localization, and analysis of expression during tooth development,” Journal of Dental Research, vol. 79, no. 4, pp. 912–919, 2000.
[128]
Y. Yamakoshi, F. Yamakoshi, J. C.-C. Hu, and J. P. Simmer, “Characterization of kallikrein-related peptidase 4 glycosylations,” European Journal of Oral Sciences, vol. 119, supplement 1, pp. 234–240, 2011.
[129]
P. S. Hart, T. C. Hart, M. D. Michalec et al., “Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta,” Journal of Medical Genetics, vol. 41, no. 7, pp. 545–549, 2004.
[130]
M. Goldberg, D. Septier, K. Bourd et al., “Immunohistochemical localization of MMP-2, MMP-9, TIMP-1, and TIMP-2 in the forming rat incisor,” Connective Tissue Research, vol. 44, no. 3-4, pp. 143–153, 2003.
[131]
R. Hall, D. Septier, G. Embery, and M. Goldberg, “Stromelysin-1 (MMP-3) in forming enamel and predentine in rat incisor—coordinated distribution with proteoglycans suggests a functional role,” Histochemical Journal, vol. 31, no. 12, pp. 761–770, 1999.
[132]
C. Caron, J. Xue, X. Sun, J. P. Simmer, and J. D. Bartlett, “Gelatinase A (MMP-2) in developing tooth tissues and amelogenin hydrolysis,” Journal of Dental Research, vol. 80, no. 7, pp. 1660–1664, 2001.
[133]
J. Feng, J. S. McDaniel, H. H. Chuang, O. Huang, A. Rakian, et al., “Binding of amelogenin to MMP-9 and their co-expression in developing mouse teeth,” Journal of Molecular Histology, vol. 43, no. 5, pp. 473–485, 2012.
[134]
R. S. Lacruz, C. E. Smith, S. M. Smith et al., “Chymotrypsin C (caldecrin) is associated with enamel development,” Journal of Dental Research, vol. 90, no. 10, pp. 1228–1233, 2011.
[135]
A. G. Fincham, J. Moradian-Oldak, and J. P. Simmer, “The structural biology of the developing dental enamel matrix,” Journal of Structural Biology, vol. 126, no. 3, pp. 270–299, 1999.
[136]
K. Kawasaki, T. Suzuki, and K. M. Weiss, “Genetic basis for the evolution of vertebrate mineralized tissue,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 31, pp. 11356–11361, 2004.
[137]
J. D. Bartlett, B. Ganss, M. Goldberg et al., “Protein-protein interactions of the developing enamel matrix,” Current Topics in Developmental Biology, vol. 74, pp. 57–115, 2006.
[138]
M. Iwase, Y. Satta, Y. Hirai, H. Hirai, H. Imai, and N. Takahata, “The amelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5258–5263, 2003.
[139]
K. Kawasaki and K. M. Weiss, “Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 4060–4065, 2003.
[140]
J.-Y. Sire, S. Delgado, D. Fromentin, and M. Girondot, “Amelogenin: lessons from evolution,” Archives of Oral Biology, vol. 50, no. 2, pp. 205–212, 2005.
[141]
R. M. Wazen, P. Moffatt, S. F. Zalzal, Y. Yamada, and A. Nanci, “A mouse model expressing a truncated form of ameloblastin exhibits dental and junctional epithelium defects,” Matrix Biology, vol. 28, no. 5, pp. 292–303, 2009.
[142]
N. Al-Hashimi, A.-G. Lafont, S. Delgado, K. Kawasaki, and J.-Y. Sire, “The enamelin genes in lizard, crocodile, and frog and the pseudogene in the chicken provide new insights on enamelin evolution in tetrapods,” Molecular Biology and Evolution, vol. 27, no. 9, pp. 2078–2094, 2010.
[143]
J.-Y. Sire, S. C. Delgado, and M. Girondot, “Hen's teeth with enamel cap: from dream to impossibility,” BMC Evolutionary Biology, vol. 8, no. 1, article 246, 2008.
[144]
R. W. Meredith, J. Gatesy, W. J. Murphy, O. A. Ryder, and M. S. Springer, “Molecular decay of the tooth gene enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals,” PLoS Genetics, vol. 5, no. 9, Article ID e1000634, 2009.
[145]
P. S. Hart, T. C. Hart, J. P. Simmer, and J. T. Wright, “A nomenclature for X-linked amelogenesis imperfecta,” Archives of Oral Biology, vol. 47, no. 4, pp. 255–260, 2002.
[146]
T. J. Wright, P. S. Hart, M. J. Aldred et al., “Relationship of phenotype and genotype in X-linked amelogenesis imperfecta,” Connective Tissue Research, vol. 44, no. 1, pp. 72–78, 2003.
[147]
J.-W. Kim, J. P. Simmer, Y. Y. Hu et al., “Amelogenin p.M1T and p.W4S mutations underlying hypoplastic X-linked amelogenesis imperfecta,” Journal of Dental Research, vol. 83, no. 5, pp. 378–383, 2004.
[148]
Y. Yamakoshi, “Porcine amelogenin : alternative splicing, proteolytic processing, protein-protein interactions, and possible functions,” Journal of Oral Biosciences, vol. 53, no. 3, pp. 275–283, 2011.
[149]
E. C. Salido, P. H. Yen, K. Koprivnikar, L.-C. Yu, and L. J. Shapiro, “The human enamel protein gene amelogenin is expressed from both the X and the Y chromosomes,” American Journal of Human Genetics, vol. 50, no. 2, pp. 303–316, 1992.
[150]
A. G. Fincham and J. Moradian-Oldak, “Recent advances in amelogenin biochemistry,” Connective Tissue Research, vol. 32, no. 1–4, pp. 119–124, 1995.
[151]
T. Takagi, M. Suzuki, T. Baba, K. Minegishi, and S. Sasaki, “Complete amino acid sequence of amelogenin in developing bovine enamel,” Biochemical and Biophysical Research Communications, vol. 121, no. 2, pp. 592–597, 1984.
[152]
C. W. Gibson, E. Golub, W. Ding et al., “Identification of the leucine-rich amelogenin peptide (LRAP) as the translation product of an alternatively spliced transcript,” Biochemical and Biophysical Research Communications, vol. 174, no. 3, pp. 1306–1312, 1991.
[153]
E. C. Lau, J. P. Simmer, P. Bringas Jr. et al., “Alternative splicing of the mouse amelogenin primary RNA transcript contributes to amelogenin heterogeneity,” Biochemical and Biophysical Research Communications, vol. 188, no. 3, pp. 1253–1260, 1992.
[154]
Y. Li, Z.-A. Yuan, M. A. Aragon, A. B. Kulkarni, and C. W. Gibson, “Comparison of body weight and gene expression in amelogenin null and wild-type mice,” European Journal of Oral Sciences, vol. 114, supplement 1, pp. 190–193, 2006.
[155]
J. D. Bartlett, R. L. Ball, T. Kawai, C. E. Tye, M. Tsuchiya, and J. P. Simmer, “Origin, splicing, and expression of rodent amelogenin exon 8,” Journal of Dental Research, vol. 85, no. 10, pp. 894–899, 2006.
[156]
O. Baba, N. Takahashi, T. Terashima, W. Li, P. K. DenBesten, and Y. Takano, “Expression of alternatively spliced RNA transcripts of amelogenin gene exons 8 and 9 and its end products in the rat incisor,” Journal of Histochemistry and Cytochemistry, vol. 50, no. 9, pp. 1229–1236, 2002.
[157]
C. W. Gibson, Y. Li, C. Suggs et al., “Rescue of the murine amelogenin null phenotype with two amelogenin transgenes,” European Journal of Oral Sciences, vol. 119, no. 1, pp. 70–74, 2011.
[158]
J. T. Wright, Y. Li, C. Suggs, M. A. Kuehl, A. B. Kulkarni, and C. W. Gibson, “The role of amelogenin during enamel-crystallite growth and organization in vivo,” European Journal of Oral Sciences, vol. 119, supplement 1, pp. 65–69, 2011.
[159]
J. C. Hu, H. C. Chan, S. G. Simmer, F. Seymen, A. S. Richardson, et al., “Amelogenesis imperfecta in two families with defined AMELX deletions in ARHGAP6,” PLoS One, vol. 7, Article ID e52052, 2012.
[160]
B. Backman and G. Holmgren, “Amelogenesis imperfecta: a genetic study,” Human Heredity, vol. 38, no. 4, pp. 189–206, 1988.
[161]
M. D. Berkman and A. Singer, “Demonstration of the lyon hypothesis in X-linked dominant hypoplastic amelogenesis imperfecta,” Birth Defects Original Article Series, vol. 7, no. 7, pp. 204–209, 1971.
[162]
W. Lattanzi, M. C. di Giacomo, G. M. Lenato et al., “A large interstitial deletion encompassing the amelogenin gene on the short arm of the Y chromosome,” Human Genetics, vol. 116, no. 5, pp. 395–401, 2005.
[163]
A. Akane, “Sex determination by PCR analysis of the X-Y amelogenin gene,” Methods in Molecular Biology, vol. 98, pp. 245–249, 1998.
[164]
M. A. Jobling, I. C. C. Lo, D. J. Turner et al., “Structural variation on the short arm of the human Y chromosome: recurrent multigene deletions encompassing Amelogenin Y,” Human Molecular Genetics, vol. 16, no. 3, pp. 307–316, 2007.
[165]
P. H. Krebsbach, S. K. Lee, Y. Matsuki, C. A. Kozak, K. M. Yamada, and Y. Yamada, “Full-length sequence, localization, and chromosomal mapping of ameloblastin: a novel tooth-specific gene,” Journal of Biological Chemistry, vol. 271, no. 8, pp. 4431–4435, 1996.
[166]
C. K. M?rdh, B. B?ckman, D. Simmons et al., “Human ameloblastin gene: genomic organization and mutation analysis in amelogenesis imperfecta patients,” European Journal of Oral Sciences, vol. 109, no. 1, pp. 8–13, 2001.
[167]
M. Fukae and T. Tanabe, “Nonamelogenin components of porcine enamel in the protein fraction free from the enamel crystals,” Calcified Tissue International, vol. 40, no. 5, pp. 286–293, 1987.
[168]
C. Murakami, N. Dohi, M. Fukae et al., “Immunochemical and immunohistochemical study of the 27- and 29-kDa calcium-binding proteins and related proteins in the porcine tooth germ,” Histochemistry and Cell Biology, vol. 107, no. 6, pp. 485–494, 1997.
[169]
T. Uchida, C. Murakami, N. Dohi, K. Wakida, T. Satoda, and O. Takahashi, “Synthesis, secretion, degradation, and fate of ameloblastin during the matrix formation stage of the rat incisor as shown by immunocytochemistry and immunochemistry using region-specific antibodies,” Journal of Histochemistry and Cytochemistry, vol. 45, no. 10, pp. 1329–1340, 1997.
[170]
R. ?erny, I. Slaby, L. Hammarstr?m, and T. Wurtz, “A novel gene expressed in rat ameloblasts codes for proteins with cell binding domains,” Journal of Bone and Mineral Research, vol. 11, no. 7, pp. 883–891, 1996.
[171]
C.-C. Hu, M. Fukae, T. Uchida et al., “Sheathlin: cloning, cDNA/polypeptide sequences, and immunolocalization of porcine enamel sheath proteins,” Journal of Dental Research, vol. 76, no. 2, pp. 648–657, 1997.
[172]
K. Kobayashi, Y. Yamakoshi, J. C.-C. Hu et al., “Splicing determines the glycosylation state of ameloblastin,” Journal of Dental Research, vol. 86, no. 10, pp. 962–967, 2007.
[173]
Y. Yamakoshi, T. Tanabe, S. Oida, C.-C. Hu, J. P. Simmer, and M. Fukae, “Calcium binding of enamel proteins and their derivatives with emphasis on the calcium-binding domain of porcine sheathlin,” Archives of Oral Biology, vol. 46, no. 11, pp. 1005–1014, 2001.
[174]
A. M. Brunati, O. Marin, A. Bisinella, A. Salviati, and L. A. Pinna, “Novel consensus sequence for the Golgi apparatus casein kinase, revealed using proline-rich protein-1 (PRP1)-derived peptide substrates,” Biochemical Journal, vol. 351, part 3, pp. 765–768, 2000.
[175]
M. Fukae, M. Kanazashi, T. Nagano, T. Tanabe, S. Oida, and K. Gomi, “Porcine sheath proteins show periodontal ligament regeneration activity,” European Journal of Oral Sciences, vol. 114, supplement 1, pp. 212–218, 2006.
[176]
J. Vymětal, I. Slaby, A. Spahr, J. Vondrá?ek, and S. P. Lyngstadaas, “Bioinformatic analysis and molecular modelling of human ameloblastin suggest a two-domain intrinsically unstructured calcium-binding protein,” European Journal of Oral Sciences, vol. 116, no. 2, pp. 124–134, 2008.
[177]
J. C.-C. Hu, R. Lertlam, A. S. Richardson, C. E. Smith, M. D. McKee, and J. P. Simmer, “Cell proliferation and apoptosis in enamelin null mice,” European Journal of Oral Sciences, vol. 119, supplement 1, pp. 329–337, 2011.
[178]
N. Al-Hashimi, J.-Y. Sire, and S. Delgado, “Evolutionary analysis of mammalian enamelin, the largest enamel protein, supports a crucial role for the 32-kDa peptide and reveals selective adaptation in rodents and primates,” Journal of Molecular Evolution, vol. 69, no. 6, pp. 635–656, 2009.
[179]
C.-C. Hu, M. Fukae, T. Uchida et al., “Cloning and characterization of porcine enamelin mRNAs,” Journal of Dental Research, vol. 76, no. 11, pp. 1720–1729, 1997.
[180]
M. Fukae, T. Tanabe, C. Murakami, N. Dohi, T. Uchida, and M. Shimizu, “Primary structure of the porcine 89-kDa enamelin,” Advances in Dental Research, vol. 10, no. 2, pp. 111–118, 1996.
[181]
H. Seedorf, M. Klaften, F. Eke, H. Fuchs, U. Seedorf, and M. Hrabe De Ange?is, “A mutation in the enamelin gene in a mouse model,” Journal of Dental Research, vol. 86, no. 8, pp. 764–768, 2007.
[182]
H. Masuya, K. Shimizu, H. Sezutsu et al., “Enamelin (Enam) is essential for amelogenesis: ENU-induced mouse mutants as models for different clinical subtypes of human amelogenesis imperfecta (AI),” Human Molecular Genetics, vol. 14, no. 5, pp. 575–583, 2005.
[183]
C. E. Smith, R. Wazen, Y. Hu et al., “Consequences for enamel development and mineralization resulting from loss of function of ameloblastin or enamelin,” European Journal of Oral Sciences, vol. 117, no. 5, pp. 485–497, 2009.
[184]
M. H. Rajpar, K. Harley, C. Laing, R. M. Davies, and M. J. Dixon, “Mutation of the gene encoding the enamel-specific protein, enamelin, causes autosomal-dominant amelogenesis imperfecta,” Human Molecular Genetics, vol. 10, no. 16, pp. 1673–1677, 2001.
[185]
H.-Y. Kang, F. Seymen, S.-K. Lee et al., “Candidate gene strategy reveals ENAM mutations,” Journal of Dental Research, vol. 88, no. 3, pp. 266–269, 2009.
[186]
T. C. Hart, P. S. Hart, M. C. Gorry et al., “Novel ENAM mutation responsible for autosomal recessive amelogenesis imperfecta and localised enamel defects,” Journal of Medical Genetics, vol. 40, no. 12, pp. 900–906, 2003.
[187]
C. K. M?rdh, B. B?ckman, G. Holmgren, J. C.-C. Hu, J. P. Simmer, and K. Forsman-Semb, “A nonsense mutation in the enamelin gene causes local hypoplastic autosomal dominant amelogenesis imperfecta (AIH2),” Human Molecular Genetics, vol. 11, no. 9, pp. 1069–1074, 2002.
[188]
H.-C. Chan, L. Mai, A. Oikonomopoulou et al., “Altered enamelin phosphorylation site causes amelogenesis imperfecta,” Journal of Dental Research, vol. 89, no. 7, pp. 695–699, 2010.
[189]
S. G. Simmer, N. M. Estrella, R. N. Milkovich, and J. C. Hu, “Autosomal dominant amelogenesis imperfecta associated with ENAM frameshift mutation p.Asn36Ilefs56,” Clinical Genetics, vol. 83, no. 2, pp. 195–197, 2013.
[190]
J.-W. Kim, S.-K. Lee, Z. H. Lee et al., “FAM83H mutations in families with autosomal-dominant hypocalcified Amelogenesis Imperfecta,” American Journal of Human Genetics, vol. 82, no. 2, pp. 489–494, 2008.
[191]
J. A. Poulter, W. El-Sayed, R. C. Shore, J. Kirkham, C. F. Inglehearn, et al., “Whole-exome sequencing, without prior linkage, identifies a mutation in LAMB3 as a cause of dominant hypoplastic amelogenesis imperfecta,” European Journal of Human Genetics, 2013.
[192]
W. El-Sayed, D. A. Parry, R. C. Shore et al., “Mutations in the beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta,” American Journal of Human Genetics, vol. 85, no. 5, pp. 699–705, 2009.
[193]
D. A. Parry, S. J. Brookes, C. V. Logan, J. A. Poulter, W. El-Sayed, et al., “Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta,” American Journal of Human Genetics, vol. 91, no. 3, pp. 565–571, 2012.
[194]
D. A. Parry, J. A. Poulter, C. V. Logan, S. J. Brookes, H. Jafri, et al., “Identification of mutations in SLC24A4, encoding a potassium-dependent sodium/calcium exchanger, as a cause of amelogenesis imperfecta,” American Journal of Human Genetics, vol. 92, no. 2, pp. 307–312, 2013.
[195]
P. Bodier-Houllé, P. Steuer, J. M. Meyer, L. Bigeard, and F. J. G. Cuisinier, “High-resolution electron-microscopic study of the relationship between human enamel and dentin crystals at the dentinoenamel junction,” Cell and Tissue Research, vol. 301, no. 3, pp. 389–395, 2000.
[196]
E. Beniash, R. A. Metzler, R. S. K. Lam, and P. U. P. A. Gilbert, “Transient amorphous calcium phosphate in forming enamel,” Journal of Structural Biology, vol. 166, no. 2, pp. 133–143, 2009.
[197]
V. Gallon, L. Chen, X. Yang, and J. Moradian-Oldak, “Localization and quantitative co-localization of enamelin with amelogenin,” Journal of Structural Biology, 2013.