Objective. The purpose of this study was to examine alterations in blood-flow signals (BFS) from human teeth during an alignment and leveling phase (superelastic wire 0.014′′) in a clinical orthodontic treatment using laser doppler flowmetry (LDF). Materials and Methods. Recordings were made in 12 maxillary left central incisors. The basal value of the BFS from each tooth (without orthodontic forces) was compared with the corresponding values of BFS during four periods of observation: 20 minutes, 48 hours, 72 hours, and one month after the activation of the orthodontic appliance. Results. Statistically significant decrease of BFS was observed at 20 minutes, 48 hours, and 72 hours . No differences were found comparing BFS on day 30 and the corresponding basal values. Conclusion. Under real clinical conditions, a significant decrease in BFS was verified during the initial phase of the treatment, followed by a recovery on day 30. 1. Introduction A common reaction to orthodontic forces is an inflammatory process in the periodontal support tissues. The inflammatory process is a necessary condition for tooth movement and commonly affects the dental pulp [1]. Changes in blood flow are closely related to inflammatory processes. Thus, the evaluation of changes in the blood flow in the dental pulp and periodontal tissues during the application of orthodontic forces is of interest to study the mechanisms of the movement and related iatrogenic alterations in the dental pulp and root [1–4]. In initial studies, alterations in blood flow were analyzed in animal models by invasive and destructive methods due to the difficulties in accessing the pulp and periodontal tissues. More recently, the laser Doppler flowmetry (LDF) has been used to study practically all human organs. The method is noninvasive, offers no risk and allows measurement in real time. The blood-flow signals (BFS) from intact teeth, measured by the LDF, contain information of alterations in the blood flow in the dental pulp. Therefore, the technique has been used to evaluate alterations in blood flow in the dental pulp during orthodontic movements in humans. The information in the literature is limited to experimental movements such as intrusive (intermittent forces) [5–8], extrusive (intermittent forces) [5], intrusive (continuous forces during six days) [8], and tipping (continuous forces during three days) ones [9]. In these studies, experiments were carried out in laboratory, and the movements were monitored during short time intervals. BFS changes in real clinical time and conditions remain
References
[1]
V. Vandevska-Radunovic, “Neural modulation of inflammatory reactions in dental tissues incident to orthodontic tooth movement. A review of the literature,” European Journal of Orthodontics, vol. 21, no. 3, pp. 231–247, 1999.
[2]
P. A. Villa, G. Oberti, C. A. Moncada et al., “Pulp-dentine complex changes and root resorption during intrusive orthodontic tooth movement in patients prescribed nabumetone,” Journal of Endodontics, vol. 31, no. 1, pp. 61–66, 2005.
[3]
M. Yamaguchi and K. Kasai, “The effects of orthodontic mechanics on the dental pulp,” Seminars in Orthodontics, vol. 13, no. 4, pp. 272–280, 2007.
[4]
A. Oppenheim, “Human tissue response to orthodontic intervention of short and long duration,” American Journal of Orthodontics and Oral Surgery, vol. 28, no. 5, pp. 263–301, 1942.
[5]
P. Brodin, L. Linge, and H. Aars, “Instant assessment of pulpal blood flow after orthodontic force application,” Journal of Orofacial Orthopedics, vol. 57, no. 5, pp. 306–309, 1996.
[6]
P. J. Barwick and D. S. Ramsay, “Effect of brief intrusive force on human pulpal blood flow,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 110, no. 3, pp. 273–279, 1996.
[7]
M. Ikawa, M. Fujiwara, H. Horiuchi, and H. Shimauchi, “The effect of short-term tooth intrusion on human pulpal blood flow measured by laser Doppler flowmetry,” Archives of Oral Biology, vol. 46, no. 9, pp. 781–787, 2001.
[8]
Y. Sano, M. Ikawa, J. Sugawara, H. Horiuchi, and H. Mitani, “The effect of continuous intrusive force on human pulpal blood flow,” European Journal of Orthodontics, vol. 24, no. 2, pp. 159–166, 2002.
[9]
F. Mcdonald and T. R. Pitt Ford, “Blood flow changes in permanent maxillary canines during retraction,” European Journal of Orthodontics, vol. 16, no. 1, pp. 1–9, 1994.
[10]
N. Vongsavan and B. Matthews, “Some aspects of the use of laser Doppler flow meters for recording tissue blood flow,” Experimental Physiology, vol. 78, no. 1, pp. 1–14, 1993.
[11]
F. C. Setzer, P. Challagulla, S. H. H. Kataoka, and M. Trope, “Effect of tooth isolation on laser Doppler readings,” International Endodontic Journal, vol. 45, no. 6, pp. 1–6, 2012.
[12]
R. Hemingway, R. L. Williams, J. A. Hunt, and S. J. Rudge, “The influence of bracket type on the force delivery of Ni-Ti archwires,” European Journal of Orthodontics, vol. 23, no. 3, pp. 233–241, 2001.
[13]
K. J. Heyeraas and I. Kvinnsland, “Tissue pressure and blood flow in pulpal inflammation,” Proceedings of the Finnish Dental Society, vol. 88, pp. 393–401, 1992.
[14]
K. J. Heyeraas and E. Berggreen, “Interstitial fluid pressure in normal and inflamed pulp,” Critical Reviews in Oral Biology and Medicine, vol. 10, no. 3, pp. 328–336, 1999.
[15]
C. Sander, F. M. Sander, and F. G. Sander, “The behaviour of the periodontal ligament is influencing the use of new treatment tools,” Journal of Oral Rehabilitation, vol. 33, no. 9, pp. 706–711, 2006.
[16]
K. Noda, Y. Nakamura, K. Kogure, and Y. Nomura, “Morphological changes in the rat periodontal ligament and its vascularity after experimental tooth movement using superelastic forces,” European Journal of Orthodontics, vol. 31, no. 1, pp. 37–45, 2009.
[17]
H. Packman, I. Shoher, and R. S. Stein, “Vascular responses in the human periodontal ligament and alveolar bone detected by photoelectric plethysmography: the effect of force application to the tooth,” Journal of Periodontology, vol. 48, no. 4, pp. 194–200, 1977.
[18]
P. Gaengler and K. Merte, “Effects of force application on periodontal blood circulation. A vital microscopic study in rats,” Journal of Periodontal Research, vol. 18, no. 1, pp. 86–92, 1983.
[19]
S. Soo-Ampon, N. Vongsavan, M. Soo-Ampon, S. Chuckpaiwong, and B. Matthews, “The sources of laser Doppler blood-flow signals recorded from human teeth,” Archives of Oral Biology, vol. 48, no. 5, pp. 353–360, 2003.
[20]
H. Jafarzadeh, “Laser Doppler flowmetry in endodontics,” International Endodontic Journal, vol. 42, no. 6, pp. 476–490, 2009.
[21]
K. Kijsamanmith, S. Timpawat, N. Vongsavan, and B. Matthews, “Pulpal blood flow recorded from human premolar teeth with a laser Doppler flow meter using either red or infrared light,” Archives of Oral Biology, vol. 56, no. 7, pp. 629–633, 2011.
[22]
A. Hartmann, J. Azérad, and Y. Boucher, “Environmental effects on laser Doppler pulpal blood-flow measurements in man,” Archives of Oral Biology, vol. 41, no. 4, pp. 333–339, 1996.
[23]
S. Mesaros, M. Trope, W. Maixner, and E. J. Burkes, “Comparison of two laser Doppler systems on the measurement of blood flow of premolar teeth under different pulpal conditions,” International Endodontic Journal, vol. 30, no. 3, pp. 167–174, 1997.
[24]
N. Vongsavan and B. Matthews, “Experiments in pigs on the sources of laser Doppler blood-flow signals recorded from teeth,” Archives of Oral Biology, vol. 41, no. 1, pp. 97–103, 1996.
[25]
D. A. Baab, P. A. Oberg, and G. A. Holloway, “Gingival blood flow measured with a laser doppler flowmeter,” Journal of Periodontal Research, vol. 21, no. 1, pp. 73–85, 1986.
[26]
N. Pati?o-Marín, F. Martínez, J. P. Loyola-Rodríguez, E. Tenorio-Govea, M. D. Brito-Orta, and M. Rodríguez-Martínez, “A novel procedure for evaluating gingival perfusion status using laser-Doppler flowmetry,” Journal of Clinical Periodontology, vol. 32, no. 3, pp. 231–237, 2005.
[27]
E. M. Roebuck, D. J. P. Evans, D. Stirrups, and R. Strang, “The effect of wavelength, bandwidth, and probe design and position on assessing the vitality of anterior teeth with laser Doppler flowmetry,” International Journal of Paediatric Dentistry, vol. 10, no. 3, pp. 213–220, 2000.
[28]
K. Yamaguchi, R. S. Nanda, and T. Kawata, “Effect of orthodontic forces on blood flow in human gingiva,” Angle Orthodontist, vol. 61, no. 3, pp. 193–203, 1991.