全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Prevalence of Dental Anomalies in the Western Region of Saudi Arabia

DOI: 10.5402/2012/837270

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. The aim of this cross-sectional study was to investigate the prevalence of dental anomalies that could be a cause of malocclusion in the western region of Saudi Arabia. Materials and Methods. A retrospective study of 878 digital orthopantomograms (OPGs) taken of patients, age ranging between 12 and 30 years, who presented to treatment at the Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia between 2002 and 2011. The OPGs and dental records were reviewed for congenitally missing teeth, supernumerary teeth, impactions, ectopic eruption, transposition, germination, fusion, dilacerations, taurodontism, dens in dent, and any other unusual conditions that can be assessed with OPG. Results. The prevalence of patient that exhibited at least one dental anomaly was 396 (45.1%) patients. The prevalence of congenitally missing teeth was 226 (25.7%), impacted teeth 186 (21.1%), dilacerated teeth 10 (1.1%), supernumerary teeth 3 (0.3%), odontoma 1 (0.1%), and taurodontism was also 1 case (0.1%) of the total radiographs reviewed. Conclusions. Congenitally missing teeth were found to be the most prevalent anomaly (25.7%), and the second frequent anomaly was impacted teeth (21.1%), whereas root dilacerations, supernumerary teeth, and taurodontism were the least frequent anomalies (1.1%, 0.3% and 0.1%, resp.). 1. Introduction Dental anomalies in tooth number, shape, and position usually result in problems in maxillary and mandibular arch length and occlusion, which may greatly influence orthodontic treatment planning. The etiology of these conditions is usually attributed to certain genes in addition to some etiological events in the prenatal and postnatal periods that may result in anomalies in tooth size, shape, position, number, and structure [1–5]. Congenitally missing teeth constitute the most common developmental anomaly of the human dentition, occurring in approximately 25% of the population, and the wisdom tooth represents the most affected tooth (20.7%) [6]. Excluding third molars, the prevalence of tooth agenesis is approximately 4.3 to 7.8%, and the mandibular second premolars are the most commonly missing teeth, followed by the maxillary lateral incisors and maxillary second premolars [7]. Ethnic background was found to have an effect on the prevalence of tooth agenesis. Epidemiological studies revealed a lower prevalence of agenesis in the Black race compared to the White race, while Asians showed increased tooth agenesis compared to Whites [7]. Sexual differences were also reported in the prevalence of tooth agenesis, where

References

[1]  E. K. Basdra, M. Kiokpasoglou, and A. Stellzig, “The Class II division 2 craniofacial type is associated with numerous congenital tooth anomalies,” European Journal of Orthodontics, vol. 22, no. 5, pp. 529–535, 2000.
[2]  B. Bayda?, H. Oktay, and I. M. Da?suyu, “The effect of heritability on Bolton tooth-size discrepancy,” European Journal of Orthodontics, vol. 27, no. 1, pp. 98–102, 2005.
[3]  S. M. Garn, A. B. Lewis, and R. S. Kerewsky, “X-linked inheritance of tooth size,” Journal of Dental Research, vol. 44, pp. 439–441, 1965.
[4]  N. Kotsomitis, M. P. Dunne, and T. J. Freer, “A genetic aetiology for some common dental anomalies: a pilot twin study,” Australian Orthodontic Journal, vol. 14, no. 3, pp. 172–178, 1996.
[5]  J. A. Sofaer, “Human tooth-size asymmetry in cleft lip with or without cleft palate,” Archives of Oral Biology, vol. 24, no. 2, pp. 141–146, 1979.
[6]  D. G. Garib, S. Peck, and S. C. Gomes, “Increased occurrence of dental anomalies associated with second-premolar agenesis,” Angle Orthodontist, vol. 79, no. 3, pp. 436–441, 2009.
[7]  B. J. Polder, M. A. Van't Hof, F. P. G. M. Van Der Linden, and A. M. Kuijpers-Jagtman, “A meta-analysis of the prevalence of dental agenesis of permanent teeth,” Community Dentistry and Oral Epidemiology, vol. 32, no. 3, pp. 217–226, 2004.
[8]  Y. Shapira, T. Finkelstein, N. Shpack, Y. H. Lai, M. M. Kuftinec, and A. Vardimon, “Mandibular second molar impaction. Part I: genetic traits and characteristics,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 140, no. 1, pp. 32–37, 2011.
[9]  P. A. Mossey, “The heritability of malocclusion: part 2. The influence of genetics in malocclusion,” British Journal of Orthodontics, vol. 26, no. 3, pp. 195–203, 1999.
[10]  H. Vastardis, “The genetics of human tooth agenesis: new discoveries for understanding dental anomalies,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 117, no. 6, pp. 650–656, 2000.
[11]  M. Markovic, “Hypodontia in twins,” Swedish Dental Journal, vol. 15, pp. 153–162, 1982.
[12]  S. Ericson and J. Kurol, “Resorption of incisors after ectopic eruption of maxillary canines: a CT study,” Angle Orthodontist, vol. 70, no. 6, pp. 415–423, 2000.
[13]  S. Peck, L. Peck, and M. Kataja, “The palatally displaced canine as a dental anomaly of genetic origin,” Angle Orthodontist, vol. 64, no. 4, pp. 249–256, 1994.
[14]  T. Baccetti, “A controlled study of associated dental anomalies,” Angle Orthodontist, vol. 68, no. 3, pp. 267–274, 1998.
[15]  R. Abe, T. Endo, and S. Shimooka, “Maxillary first molar agenesis and other dental anomalies,” Angle Orthodontist, vol. 80, no. 6, pp. 1002–1009, 2010.
[16]  S. Garn and A. B. Lewis, “The relationship between third molar agenesis and reduction in tooth number,” The Angle Orthodontist, vol. 32, no. 1, pp. 14–18, 1962.
[17]  S. M. GARN, A. B. LEWIS, and J. H. VICINUS, “Third molar agenesis and reduction in the number of other teeth,” Journal of Dental Research, vol. 41, p. 717, 1962.
[18]  M. M. Bedoya and J. H. Park, “A review of the diagnosis and management of impacted maxillary canines,” Journal of the American Dental Association, vol. 140, no. 12, pp. 1485–1493, 2009.
[19]  P. S. Grover and L. Lorton, “The incidence of unerupted permanent teeth and related clinical cases,” Oral Surgery, Oral Medicine, Oral Pathology, vol. 59, no. 4, pp. 420–425, 1985.
[20]  R. M. Shah, M. A. Boyd, and T. F. Vakil, “Studies of permanent tooth anomalies in 7,886 Canadian individuals. I: impacted teeth,” Dental Journal, vol. 44, no. 6, pp. 262–264, 1978.
[21]  B. Thilander and N. Myrberg, “The prevalence of malocclusion in Swedish schoolchildren,” Scandinavian Journal of Dental Research, vol. 81, no. 1, pp. 12–21, 1973.
[22]  K. Gunduz, A. Acikgoz, and E. Egrioglu, “Radiologic investigation of prevalence, associated pathologies and dental anomalies of non-third molar impacted teeth in Turkish oral patients,” The Chinese Journal of Dental Research, vol. 14, no. 2, pp. 141–146, 2011.
[23]  U. Aydin, H. H. Yilmaz, and D. Yildirim, “Incidence of canine impaction and transmigration in a patient population,” Dentomaxillofacial Radiology, vol. 33, no. 3, pp. 164–169, 2004.
[24]  A. A. Zahrani, “Impacted cuspids in a Saudi population: prevalence, etiology and complications,” Egyptian Dental Journal, vol. 39, no. 1, pp. 367–374, 1993.
[25]  A. Fardi, A. Kondylidou-Sidira, Z. Bachour, N. Parisis, and A. Tsirlis, “Incidence of impacted and supernumerary teeth-a radiographic study in a North Greek population,” Medicina Oral, Patologia Oral y Cirugia Bucal, vol. 16, no. 1, Article ID 16791, pp. e56–e61, 2011.
[26]  M. Celikoglu, H. Kamak, and H. Oktay, “Investigation of transmigrated and impacted maxillary and mandibular canine teeth in an orthodontic patient population,” Journal of Oral and Maxillofacial Surgery, vol. 68, no. 5, pp. 1001–1006, 2010.
[27]  M. S. Yavuz, M. H. Aras, M. C. Büyükkurt, and S. Tozoglu, “Impacted mandibular canines,” Journal of Contemporary Dental Practice, vol. 8, no. 7, pp. 078–085, 2007.
[28]  R. M. Kramer and A. C. Williams, “The incidence of impacted teeth. A survey at Harlem Hospital,” Oral Surgery, Oral Medicine, Oral Pathology, vol. 29, no. 2, pp. 237–241, 1970.
[29]  A. A. Sa?lam and M. S. M. S. Tüzüm, “Clinical and radiologic investigation of the incidence, complications, and suitable removal times for fully impacted teeth in the Turkish population,” Quintessence International, vol. 34, no. 1, pp. 53–59, 2003.
[30]  B. B?ckman and Y. B. Wahlin, “Variations in number and morphology of permanent teeth in 7-year-old Swedish children,” International Journal of Paediatric Dentistry, vol. 11, no. 1, pp. 11–17, 2001.
[31]  J. R. Luten Jr., “The prevalence of supernumerary teeth in primary and mixed dentitions,” Journal of Dentistry for Children, vol. 34, no. 5, pp. 346–353, 1967.
[32]  G. Salem, “Prevalence of selected dental anomalies in Saudi children from Gizan region,” Community Dentistry and Oral Epidemiology, vol. 17, no. 3, pp. 162–163, 1989.
[33]  E. Ferrés-Padró, J. Prats-Armengol, and E. Ferrés-Amat, “A descriptive study of 113 unerupted supernumerary teeth in 79 pediatric patients in Barcelona,” Medicina Oral, Patologia Oral y Cirugia Bucal, vol. 14, no. 3, pp. E146–E152, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133