In the last decade, a new statistical methodology, namely, network meta-analysis, has been developed to address limitations in traditional pairwise meta-analysis. Network meta-analysis incorporates all available evidence into a general statistical framework for comparisons of all available treatments. A further development in the network meta-analysis is to use a Bayesian statistical approach, which provides a more flexible modelling framework to take into account heterogeneity in the evidence and complexity in the data structure. The aim of this paper is therefore to provide a nontechnical introduction to network meta-analysis for dental research community and raise the awareness of it. An example was used to demonstrate how to conduct a network meta-analysis and the differences between it and traditional meta-analysis. The statistical theory behind network meta-analysis is nevertheless complex, so we strongly encourage close collaboration between dental researchers and experienced statisticians when planning and conducting a network meta-analysis. The use of more sophisticated statistical approaches such as network meta-analysis will improve the efficiency in comparing the effectiveness between multiple treatments across a set of trials. 1. Introduction With the rise of evidence-based medicine movement in the last two decades, systematic reviews and meta-analyses have been widely used for synthesis of evidence on beneficial and/or harmful effects of different treatments. Results from those reviews and meta-analyses provide important information for drawing clinical guidelines and making health policy recommendations. For most clinical conditions, several interventions (which may be drugs, medical devices, surgeries, or a combination of them) are usually available, but most systematic reviews of randomised controlled trials (RCTs) tend to limit their scopes by only evaluating two active treatments or comparing one treatment to a control. Even if a systematic review evaluates multiple treatments, traditional meta-analysis can only perform pairwise comparisons. There are several limitations to this approach [1–4]. For instance, suppose there are three new and more expensive treatments A, B, and C and a standard treatment D, six pair-wise metaanalyses (A-B, B-C, A–C, A–D, B–D, and C-D) may be undertaken to compare the differences for pairs of the four treatments. None or few of included RCTs in the paper would have compared all four treatments, and most RCTs compared only 2 or 3 of them. Consequently, those pairwise meta-analyses use different sets of
References
[1]
A. E. Ades, M. Sculpher, A. Sutton et al., “Bayesian methods for evidence synthesis in cost-effectiveness analysis,” PharmacoEconomics, vol. 24, no. 1, pp. 1–19, 2006.
[2]
A. Sutton, A. E. Ades, N. Cooper, and K. Abrams, “Use of indirect and mixed treatment comparisons for technology assessment,” PharmacoEconomics, vol. 26, no. 9, pp. 753–767, 2008.
[3]
D. C. Hoaglin, N. Hawkins, J. P. Jansen et al., “Conducting indirect-treatment-comparison and network-meta-analysis studies: report of the ISPOR task force on indirect treatment comparisons good research practices: part 2,” Value in Health, vol. 14, no. 4, pp. 429–437, 2011.
[4]
J. P. Jansen, R. Fleurence, B. Devine et al., “Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: report of the ISPOR task force on indirect treatment comparisons good research practices: part 1,” Value in Health, vol. 14, no. 4, pp. 417–428, 2011.
[5]
T. Lumley, “Network meta-analysis for indirect treatment comparisons,” Statistics in Medicine, vol. 21, no. 16, pp. 2313–2324, 2002.
[6]
B. M. Psaty, T. Lumley, C. D. Furberg et al., “Health outcomes associated with various antihypertensive therapies used as first-line agents: a network meta-analysis,” JAMA, vol. 289, no. 19, pp. 2534–2544, 2003.
[7]
A. M. Glenny, D. G. Altman, F. Song et al., “Indirect comparisons of competing interventions,” Health Technology Assessment, vol. 9, no. 26, pp. 1–134, 2005.
[8]
A. Cipriani, T. A. Furukawa, G. Salanti et al., “Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis,” The Lancet, vol. 373, no. 9665, pp. 746–758, 2009.
[9]
O. J. Phung, J. M. Scholle, M. Talwar, and C. I. Coleman, “Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes,” JAMA, vol. 303, no. 14, pp. 1410–1418, 2010.
[10]
C. I. Coleman, W. L. Baker, J. Kluger, and C. M. White, “Antihypertensive medication and their impact on cancer incidence: a mixed treatment comparison meta-analysis of randomized controlled trials,” Journal of Hypertension, vol. 26, no. 4, pp. 622–629, 2008.
[11]
A. Cipriani, C. Barbui, G. Salanti et al., “Comparative efficacy and acceptability of antimanic drugs in acute mania: a multiple-treatments meta-analysis,” The Lancet, vol. 378, no. 9799, pp. 1306–1315, 2011.
[12]
K. V. Chang, S. Y. Chen, W. S. Chen, Y. K. Tu, and K. L. Chien, “Comparative effectiveness of focused shock wave therapy of different intensity levels and radial shock wave therapy for treating plantar fasciitis: a systematic review and network meta-analysis,” Archives of Physical Medicine & Rehabilitation. In press.
[13]
Y. K. Tu, A. Woolston, and C. M. Faggion, “Do bone grafts or barrier membranes provide additional treatment effects for infrabony lesions treated with enamel matrix derivatives? A network meta-analysis of randomized-controlled trials,” Journal of Clinical Periodontology, vol. 37, no. 1, pp. 59–79, 2010.
[14]
M. C. M. Wong, J. Clarkson, A. M. Glenny et al., “Cochrane reviews on the benefits/risks of fluoride toothpastes,” Journal of Dental Research, vol. 90, no. 5, pp. 573–579, 2011.
[15]
C. M. Faggion Jr, L. Chambrone, S. Listl, and Y.-K. Tu, “Network meta-analysis for evaluating interventions in implant dentistry: the case of peri-implantitis treatment,” Clinical Implant Dentistry & Related Research. In press.
[16]
Y.-K. Tu, I. Needleman, L. Chambrone, H.-K. Lu, and C. M. Faggion Jr., “A bayesian network meta-analysis on comparisons of enamel matrix derivatives, guided tissue regeneration and their combination therapies,” Journal of Clinical Periodontology, vol. 39, no. 3, pp. 303–314, 2012.
[17]
F. Song, D. G. Altman, A. M. Glenny, and J. J. Deeks, “Validity of indirect comparison for estimating efficacy of competing interventions: empirical evidence from published meta-analyses,” BMJ, vol. 326, no. 7387, pp. 472–475, 2003.
[18]
F. Song, T. Xiong, S. Parekh-Bhurke et al., “Inconsistency between direct and indirect comparisons of competing interventions: meta-epidemiological study,” BMJ, vol. 343, no. 7821, article 472, 2011.
[19]
T. Li, M. A. Puhan, S. S. Vedula, S. Singh, and K. Dickersin, “Network meta-analysis—highly attractive but more methodological research is needed,” BMC Medicine, vol. 9, article 79, 2011.
[20]
S. Donegan, P. Williamson, C. Gamble, and C. Tudur-Smith, “Indirect comparisons: a review of reporting and methodological quality,” PLoS ONE, vol. 5, no. 11, Article ID e11054, 2010.
[21]
S. Dias, N. J. Welton, D. M. Caldwell, and A. E. Ades, “Checking consistency in mixed treatment comparison meta-analysis,” Statistics in Medicine, vol. 29, no. 7-8, pp. 932–944, 2010.
[22]
G. Salanti, J. P. T. Higgins, A. E. Ades, and J. P. A. Ioannidis, “Evaluation of networks of randomized trials,” Statistical Methods in Medical Research, vol. 17, no. 3, pp. 279–301, 2008.
[23]
G. Salanti, V. Marinho, and J. P. T. Higgins, “A case study of multiple-treatments meta-analysis demonstrates that covariates should be considered,” Journal of Clinical Epidemiology, vol. 62, no. 8, pp. 857–864, 2009.
[24]
A. Whitehead, Meta-Analysis of Controlled Clinical Trials, John Wiley & Sons, Chichester, UK, 2002.
[25]
B. Jones, J. Roger, P. W. Lane et al., “Statistical approaches for conducting network meta-analysis in drug development,” Pharmaceutical Statistics, vol. 10, no. 6, pp. 523–531, 2011.
[26]
G. Lu and A. E. Ades, “Combination of direct and indirect evidence in mixed treatment comparisons,” Statistics in Medicine, vol. 23, no. 20, pp. 3105–3124, 2004.
[27]
G. Lu and A. E. Ades, “Assessing evidence inconsistency in mixed treatment comparisons,” Journal of the American Statistical Association, vol. 101, no. 474, pp. 447–459, 2006.
[28]
I. Ntzoufras, Bayesian Modeling Using WinBUGS, John Wiley & Sons, New Jersey, NJ, USA, 2009.
[29]
A. Sculean, P. Windisch, G. C. Chiantella, N. Donos, M. Brecx, and E. Reich, “Treatment of intrabony defects with enamel matrix proteins and guided tissue regeneration: a prospective controlled clinical study,” Journal of Clinical Periodontology, vol. 28, no. 5, pp. 397–403, 2001.
[30]
M. Silvestri, G. Ricci, G. Rasperini, S. Sartori, and V. Cattaneo, “Comparison of treatments of infrabony defects with Enamel Matrix Derivative, Guided Tissue Regeneration with a nonresorbable membrane and Widman Modified Flap: a pilot study,” Journal of Clinical Periodontology, vol. 27, no. 8, pp. 603–610, 2000.
[31]
G. Zucchelli, F. Bernardi, L. Montebugnoli, and M. De Sanctis, “Enamel matrix proteins and guided tissue regeneration with titanium-reinforced expanded polytetrafluoroethylene membranes in the treatment of infrabony defects: a comparative controlled clinical trial,” Journal of Periodontology, vol. 73, no. 1, pp. 3–12, 2002.
[32]
L. Mayfield, G. S?derholm, H. Hallstr?m et al., “Guided tissue regeneration for the treatment of intraosseous defects using a biabsorbable membrane. A controlled clinical study,” Journal of Clinical Periodontology, vol. 25, no. 7, pp. 585–595, 1998.
[33]
M. S. Tonetti, P. Cortellini, J. E. Suvan et al., “Generalizability of the added benefits of guided tissue regeneration in the treatment of deep intrabony defects. Evaluation in a multi-center randomized controlled clinical trial,” Journal of Periodontology, vol. 69, no. 11, pp. 1183–1192, 1998.
[34]
P. Cortellini, M. S. Tonetti, N. P. Lang et al., “The simplified papilla preservation flap in the regenerative treatment of deep intrabony defects: clinical outcomes and postoperative morbidity,” Journal of Periodontology, vol. 72, no. 12, pp. 1702–1712, 2001.
[35]
P. Cortellini, G. Pini Prato, and M. S. Tonetti, “Periodontal regeneration of human intrabony defects with titanium reinforced membranes. A controlled clinical trial,” Journal of Periodontology, vol. 66, no. 9, pp. 797–803, 1995.
[36]
P. Cortellini, G. P. Prato, and M. S. Tonetti, “Periodontal regeneration of human intrabony defects with bioresorbable membranes. A controlled clinical trial,” Journal of Periodontology, vol. 67, no. 3, pp. 217–223, 1996.
[37]
M. Paolantonio, G. Perinetti, M. Dolci et al., “Surgical treatment of periodontal intrabony defects with calcium sulfate implant and barrier versus collagen barrier or open flap debridement alone: a 12-month randomized controlled clinical trial,” Journal of Periodontology, vol. 79, no. 10, pp. 1886–1893, 2008.
[38]
A. Stavropoulos, E. S. Karring, L. Kostopoulos, and T. Karring, “Deproteinized bovine bone and gentamicin as an adjunct to GTR in the treatment of intrabony defects: a randomized controlled clinical study,” Journal of Clinical Periodontology, vol. 30, no. 6, pp. 486–495, 2003.
[39]
N. Blumenthal and J. Steinberg, “The use of collagen membrane barriers in conjunction with combined demineralized bone-collagen gel implants in human infrabony defects,” Journal of Periodontology, vol. 61, no. 6, pp. 319–327, 1990.
[40]
S. Pritlove-Carson, R. M. Palmer, and P. D. Floyd, “Evaluation of guided tissue regeneration in the treatment of paired periodontal defects,” British Dental Journal, vol. 179, no. 10, pp. 388–394, 1995.
[41]
P. Ratka-Krüger, E. Neukranz, and P. Raetzke, “Guided tissue regeneration procedure with bioresorbable membranes versus conventional flap surgery in the treatment of infrabony periodontal defects,” Journal of Clinical Periodontology, vol. 27, no. 2, pp. 120–127, 2000.
[42]
B. G. Loos, P. H. G. Louwerse, A. J. Van Winkelhoff et al., “Use of barrier membranes and systemic antibiotics in the treatment of intraosseous defects,” Journal of Clinical Periodontology, vol. 29, no. 10, pp. 910–921, 2002.
[43]
P. Cortellini, G. Carnevale, M. Sanz, and M. S. Tonetti, “Treatment of deep and shallow intrabony defects. A multicenter randomized controlled clinical trial,” Journal of Clinical Periodontology, vol. 25, no. 12, pp. 981–987, 1998.
[44]
K. M. Chung, L. M. Salkin, M. D. Stein, and A. L. Freedman, “Clinical evaluation of a biodegradable collagen membrane in guided tissue regeneration,” Journal of Periodontology, vol. 61, no. 12, pp. 732–736, 1990.
[45]
F. Mora, D. Etienne, and J. P. Ouhayoun, “Treatment of interproximal angular defects by Guided Tissue Regeneration: 1 year follow-up,” Journal of Oral Rehabilitation, vol. 23, no. 9, pp. 599–606, 1996.
[46]
R. Pontoriero, J. Wennstr?m, and J. Lindhe, “The use of barrier membranes and enamel matrix proteins in the treatment of angular bone defects: a prospective controlled clinical study,” Journal of Clinical Periodontology, vol. 26, no. 12, pp. 833–840, 1999.
[47]
H. C. Bucher, G. H. Guyatt, L. E. Griffith, and S. D. Walter, “The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials,” Journal of Clinical Epidemiology, vol. 50, no. 6, pp. 683–691, 1997.
[48]
G. Salanti, A. E. Ades, and J. P. A. Ioannidis, “Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial,” Journal of Clinical Epidemiology, vol. 64, no. 2, pp. 163–171, 2011.
[49]
S. J. Edwards and J. Borrill, “Network meta-analysis: importance of appropriate trial selection,” Value in Health, vol. 13, no. 5, pp. 681–682, 2010.
[50]
N. Hawkins, D. A. Scott, B. S. Woods, and N. Thatcher, “No study left behind: a network meta-analysis in non-small-cell lung cancer demonstrating the importance of considering all relevant data,” Value in Health, vol. 12, no. 6, pp. 996–1003, 2009.
[51]
J. Madan, M. D. Stevenson, K. L. Cooper, A. E. Ades, S. Whyte, and R. Akehurst, “Consistency between direct and indirect trial evidence: is direct evidence always more reliable?” Value in Health, vol. 14, no. 6, pp. 953–960, 2011.
[52]
B. Kirkwood and J. A. E. Sterne, Essential Medical Statistics, Blackwell, London, UK, 2003.
[53]
E. Lesaffre, B. Philstrom, I. Needleman, and H. Worthington, “The design and analysis of split-mouth studies: what statisticians and clinicians should know,” Statistics in Medicine, vol. 28, no. 28, pp. 3470–3482, 2009.
[54]
Y. K. Tu, V. B?lum, and M. S. Gilthorpe, “The problem of analysing the relationship between change and initial value in oral health research,” European Journal of Oral Sciences, vol. 113, no. 4, pp. 271–278, 2005.