The aim of this study was to compare the effect of 17% EDTA, 5% maleic acid, and Nd:YAG laser on smear layer removal by SEM. Eighty single-rooted teeth were divided into three groups of 25 according to the final procedure for smear layer removal: irrigation by 17% EDTA or 5% maleic acid or Nd:YAG laser irradiation. The other five teeth was used as control. Roots were sectioned into buccal and lingual parts, and smear layer presence was recorded in the coronal, middle, and apical thirds under SEM. Data were analyzed by Kruskal-Wallis, Mann-Whitney, Friedman, and Wilcoxon tests. There was no significant difference between smear layer removal of 17% EDTA and 5% maleic acid. Nd:YAG laser showed the least effect significantly. The coronal part of samples was significantly cleaner than the middle, and the middle was cleaner than the apical section. 17% EDTA and 5% maleic acid were more effective in smear layer removal compared to Nd:YAG laser. 1. Introduction The success of root canal treatment depends on cleaning and disinfection of the canal to perform adequate obturation. The smear layer is an amorphous irregular layer containing inorganic debris as well as organic materials like pulp tissue, odontoblastic process, necrotic debris, microorganisms, and their metabolic products. It appears only on instrumented root canal dentine [1, 2]. McComb and Smith were the initial investigators who found the smear layer on the instrumented root canal walls. They found it irregular, amorphous, and granular when viewed under the SEM [3]. Some investigators believed that the presence of the smear layer helps increase the success rate of endodontic treatment because this layer blocks dentinal tubules and prevents bacterial exchange by reducing dentine permeability. They reported that the presence of the smear layer could stop bacterial migration from dentinal tubules or bacterial invasion into the dentinal tubules [4, 5]. Instead, others focused on the smear layer removal. Br?nnstr?m and Pérez-Heredia et al. believed that the smear layer feeds microorganisms and helps them colonize [6, 7]. Some researchers have reported that the smear layer prevents or delays action of canal irrigation solutions for disinfection of the bacteria and microorganisms in dentine [8, 9]. Other investigators showed root canal sealers to have a better adhesion to the root canal wall after smear layer removal [10–12]. Different methods have been used to remove the smear layer. Sodium hypochlorite (NaOCl) is a common irrigation solution used in endodontic therapy because it has bactericidal
References
[1]
M. Torabinejad, R. Handysides, A. A. Khademi, and L. K. Bakland, “Clinical implications of the smear layer in endodontics: a review,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontics, vol. 94, no. 6, pp. 658–666, 2002.
[2]
D. H. Pashley, “Smear layer: physiological considerations,” Operative Dentistry—Supplement, vol. 3, pp. 13–29, 1984.
[3]
D. McComb and D. C. Smith, “A preliminary scanning electron microscopic study of root canals after endodontic procedures,” Journal of Endodontics, vol. 1, no. 7, pp. 238–242, 1975.
[4]
A. Diamond and R. Carrel, “The smear layer: a review of restorative progress,” Journal of Pedodontics, vol. 8, no. 3, pp. 219–226, 1984.
[5]
V. J. Michelich, G. S. Schuster, and D. H. Pashley, “Bacterial penetration of human dentin in vitro,” Journal of Dental Research, vol. 59, no. 8, pp. 1398–1403, 1980.
[6]
M. Br?nnstr?m, “Smear layer: pathological and treatment considerations,” Operative Dentistry—Supplement, vol. 3, pp. 35–42, 1984.
[7]
M. Pérez-Heredia, C. M. Ferrer-Luque, M. P. González-Rodríguez, F. J. Martín-Peinado, and S. González-López, “Decalcifying effect of 15% EDTA, 15% citric acid, 5% phosphoric acid and 2.5% sodium hypochlorite on root canal dentine,” International Endodontic Journal, vol. 41, no. 5, pp. 418–423, 2008.
[8]
D. Orstavik and M. Haapasalo, “Disinfection by endodontic irrigants and dressings of experimentally infected dentinal tubules,” Endodontics & Dental Traumatology, vol. 6, no. 4, pp. 142–149, 1990.
[9]
A. Bystrom and G. Sundqvist, “The antibacterial action of sodium hypochlorite and EDTA in 60 cases of endodontic therapy,” International Endodontic Journal, vol. 18, no. 1, pp. 35–40, 1985.
[10]
B. G. Tidmarsh, “Acid-cleansed and resin-sealed root canals,” Journal of Endodontics, vol. 4, no. 4, pp. 117–121, 1978.
[11]
A. Abramovich and F. Goldberg, “The relationship of the root canal sealer to the dentine wall. An in vitro study using the scanning electron microscope,” Journal of the British Endodontic Society, vol. 9, no. 2, pp. 81–86, 1976.
[12]
R. R. White, M. Goldman, and P. S. Lin, “The influence of the smeared layer upon dentinal tubule penetration by endodontic filling materials. Part II,” Journal of Endodontics, vol. 13, no. 8, pp. 369–374, 1987.
[13]
L. M. Rubin, Z. Skobe, A. A. Krakow, and P. Gron, “The effect of instrumentation and flushing of freshly extracted teeth in endodontic therapy: a scanning electron microscope study,” Journal of Endodontics, vol. 5, no. 11, pp. 328–335, 1979.
[14]
W. R. Moorer and P. R. Wesselink, “Factors promoting the tissue dissolving capability of sodium hypochlorite,” International Endodontic Journal, vol. 15, no. 4, pp. 187–196, 1982.
[15]
B. E. Wayman, W. M. Kopp, G. J. Pinero, and E. P. Lazzari, “Citric and lactic acids as root canal irrigants in vitro,” Journal of Endodontics, vol. 5, no. 9, pp. 258–265, 1979.
[16]
M. Goldman, L. B. Goldman, R. Cavaleri, J. Bogis, and P. S. Lin, “The efficacy of several endodontic irrigating solutions: a scanning electron microscopic study: part 2,” Journal of Endodontics, vol. 8, no. 11, pp. 487–492, 1982.
[17]
R. L. Erickson, “Surface interactions of dentin adhesive materials,” Operative Dentistry, vol. 5, pp. 81–94, 1992.
[18]
B. Van Meerbeek, P. Lambrechts, S. Inokoshi, M. Braem, and G. Vanherle, “Factors affecting adhesion to mineralized tissues,” Operative Dentistry, vol. 5, pp. 111–124, 1992.
[19]
N. V. Ballal, M. Kundabala, and K. S. Bhat, “A comparative evaluation of postobturation apical seal following intracanal irrigation with maleic acid and EDTA: a dye leakage under vacuum study,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 109, no. 3, pp. e126–e130, 2010.
[20]
B. Nygaardostby, “Chelating in root canal therapy,” Odontologisk Tidskrift, vol. 65, article 31, 1957.
[21]
R. S. Yamada, A. Armas, M. Goldman, and P. S. Lin, “A scanning electron microscopic comparison of a high volume final flush with several irrigating solutions: part 3,” Journal of Endodontics, vol. 9, no. 4, pp. 137–142, 1983.
[22]
L. B. Goldman, M. Goldman, J. H. Kronman, and P. S. Lin, “The efficacy of several irrigating solutions for endodontics: a scanning electron microscopic study,” Oral Surgery, Oral Medicine, Oral Pathology, vol. 52, no. 2, pp. 197–204, 1981.
[23]
R. R. White, M. Goldman, and P. Sun Lin, “The influence of the smeared layer upon dentinal tubule penetration by plastic filling materials,” Journal of Endodontics, vol. 10, no. 12, pp. 558–562, 1984.
[24]
J. A. Weichman and F. M. Johnson, “Laser use in endodontics. A preliminary investigation,” Oral Surgery, Oral Medicine, Oral Pathology, vol. 31, no. 3, pp. 416–420, 1971.
[25]
F. H. Takeda, T. Harashima, Y. Kimura, and K. Matsumoto, “A comparative study of the removal of smear layer by three endodontic irrigants and two types of laser,” International Endodontic Journal, vol. 32, no. 1, pp. 32–39, 1999.
[26]
M. F. Ayad, “Effects of rotary instrumentation and different etchants on removal of smear layer on human dentin,” Journal of Prosthetic Dentistry, vol. 85, no. 1, pp. 67–72, 2001.
[27]
G. Levy, “Cleaning and shaping the root canal with a Nd:YAG laser beam: a comparative study,” Journal of Endodontics, vol. 18, no. 3, pp. 123–127, 1992.
[28]
H. E. Goodis, J. M. White, S. J. Marshall, and G. W. Marshall Jr., “Scanning electron microscopic examination of intracanal wall dentin: hand versus laser treatment,” Scanning Microscopy, vol. 7, no. 3, pp. 979–987, 1993.
[29]
A. Khademi, M. Yazdizadeh, and M. Feizianfard, “Determination of the minimum instrumentation size for penetration of irrigants to the apical third of root canal systems,” Journal of Endodontics, vol. 32, no. 5, pp. 417–420, 2006.
[30]
L. A. B. da Silva, A. C. M. Sanguino, C. T. Rocha, M. R. Leonardo, and R. A. B. Silva, “Scanning electron microscopic preliminary study of the efficacy of smear clear and EDTA for smear layer removal after root canal instrumentation in permanent teeth,” Journal of Endodontics, vol. 34, no. 12, pp. 1541–1544, 2008.
[31]
B. H. Sen, O. Erturk, and B. Piskin, “The effect of different concentrations of EDTA on instrumented root canal walls,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 108, no. 4, pp. 622–627, 2009.
[32]
K. K. Wadhwani, A. P. Tikku, A. Chandra, and V. K. Shakya, “A comparative evaluation of smear layer removal using two rotary instrument systems with ethylenediaminetetraacetic acid in different states: a SEM study,” Indian Journal of Dental Research, vol. 22, no. 1, pp. 10–15, 2011.
[33]
S. Calt and A. Serper, “Time-dependent effects of EDTA on dentin structures,” Journal of Endodontics, vol. 28, no. 1, pp. 17–19, 2002.
[34]
S. G. Prabhu, N. Rahim, K. S. Bhat, and J. Mathew, “Comparison of removal of endodontic smear layer using sodium hypochlorite, EDTA and different concentrations of maleic acid: a SEM study,” Endodontology, vol. 15, pp. 20–25, 2003.
[35]
N. V. Ballal, S. Kandian, K. Mala, K. S. Bhat, and S. Acharya, “Comparison of the efficacy of maleic acid and ethylenediaminetetraacetic acid in smear layer removal from instrumented human root canal: a scanning electron microscopic study,” Journal of Endodontics, vol. 35, no. 11, pp. 1573–1576, 2009.
[36]
N. V. Ballal, M. Kundabala, S. Bhat, N. Rao, and B. S. S. Rao, “A comparative in vitro evaluation of cytotoxic effects of EDTA and maleic acid: root canal irrigants,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 108, no. 4, pp. 633–638, 2009.
[37]
C. Goya, R. Yamazaki, Y. Tomita, Y. Kimura, and K. Matsumoto, “Effects of pulsed Nd:YAG laser irradiation on smear layer at the apical stop and apical leakage after obturation,” International Endodontic Journal, vol. 33, no. 3, pp. 266–271, 2000.
[38]
F. H. Takeda, T. Harashima, Y. Kimura, and K. Matsumoto, “Comparative study about the removal of smear layer by three types of laser devices,” Journal of Clinical Laser Medicine and Surgery, vol. 16, no. 2, pp. 117–122, 1998.
[39]
T. Gurbuz, Y. Ozdemir, N. Kara, C. Zehir, and M. Kurudirek, “Evaluation of root canal dentine after Nd:YAG laser irradiation and treatment with five different irrigation solutions: a preliminary study,” Journal of Endodontics, vol. 34, no. 3, pp. 318–321, 2008.
[40]
C. Zhang, Y. Kimura, K. Matsumoto, T. Harashima, and H. Zhou, “Effects of pulsed Nd:YAG laser irradiation on root canal wall dentin with different laser initiators,” Journal of Endodontics, vol. 24, no. 5, pp. 352–355, 1998.
[41]
F. Barbakow, O. Peters, and L. Havranek, “Effects of Nd:YAG lasers on root canal walls: a light and scanning electron microscopic study,” Quintessence International, vol. 30, no. 12, pp. 837–845, 1999.
[42]
B. H. Kivan?, O. I. A. Ulusoy, and G. G?rgül, “Effects of Er:YAG laser and Nd:YAG laser treatment on the root canal dentin of human teeth: a SEM study,” Lasers in Medical Science, vol. 23, no. 3, pp. 247–252, 2008.
[43]
A. H. Khademi and M. Faizianfard, “The effect of EDTA and citric acid on smear layer removal of mesial canals of first mandibular molars: a SEM study,” Journal of Research in Medical Sciences, vol. 9, pp. 27–35, 2004.