Dental materials have to meet high standards regarding mechanical strength and handling properties. There is however only a limited amount of research that has been devoted to natural formation of hydroxyapatite (HA) in contact with the materials. The objective of the current investigation was to study the surface reactions occurring in human salvia on a novel dental cement. Ceramir Crown & Bridge, a bioceramic luting agent intended for permanent cementation of conventional oral prosthetics, was evaluated by immersing discs made from the cement in human saliva and phosphate buffered saline (PBS) for seven days, after which they were dried and analyzed. The analytical methods used in order to verify HA formation on the surface were grazing incidence X-ray diffraction (GI-XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All results showed that HA was formed on the surfaces of samples stored in saliva as well as on samples stored in PBS. The possibility of a dental luting cement to promote natural formation of HA at the tooth interface increases the stability and durability of the system and could help prevent secondary caries. 1. Introduction Publications describing dental materials that promote restoring of a damaged tooth based on natural formation of hydroxyapatite (HA) are limited, that is, functional remineralizing/bioactive dental materials. All clinically used dental materials have to meet high standards with respect to handling and mechanical properties. However, the known bioactive biomaterials generally have low mechanical strength or are difficult to handle and mould, for example, bioglasses [1–3]. Attempts have been made to develop materials that promote dental remineralization of the tooth by releasing Ca2+ and ions, but so far no truly bioactive dental material has been made commercially available [4]. One material that is considered to have remineralizing properties and the necessary mechanical properties to function as a dental material is calcium aluminate (CA) [5, 6]. The main mechanism behind bioactive properties of a material has been connected to its negatively charged surface and its release of calcium, phosphate, and hydroxyl groups. These properties can even promote HA formation on the surface of the material when stored in water [7]. The mechanisms behind the HA surface layer formed have been discussed in detail elsewhere [8–10]. There are a number of materials that display bioactive properties, normally aimed as bone void fillers, for example, bioglasses, sintered hydroxyl apatites,
References
[1]
M. Vollenweider, T. J. Brunner, S. Knecht et al., “Remineralization of human dentin using ultrafine bioactive glass particles,” Acta Biomaterialia, vol. 3, no. 6, pp. 936–943, 2007.
[2]
P. Ducheyen and L. L. Hench, “The processing and static mechanical properties of metal fibre reinforced bioglass,” Journal of Materials Science, vol. 17, no. 2, pp. 595–606, 1982.
[3]
L. L. Hench, J. W. Hench, and D. C. Greenspan, “Bioglass: a short history and bibliography,” Journal of the Australian Ceramic Society, vol. 40, pp. 1–42, 2004.
[4]
D. Skrtic, J. M. Antonucci, E. D. Eanes, and N. Eidelman, “Dental composites based on hybrid and surface-modified amorphous calcium phosphates,” Biomaterials, vol. 25, no. 7-8, pp. 1141–1150, 2004.
[5]
J. L??f, H. Engqvist, N. O. Ahnfelt, K. Lindqvist, and L. Hermansson, “Mechanical properties of a permanent dental restorative material based on calcium aluminate,” Journal of Materials Science, vol. 14, no. 12, pp. 1033–1037, 2003.
[6]
J. L??f, H. Engqvist, G. Gómez-Ortega, N. O. Ahnfelt, H. Spengler, and L. Hermansson, “Mechanical property aspects of a biomineral based dental restorative system,” Key Engineering Materials, vol. 284–286, pp. 741–744, 2005.
[7]
J. Engstrand, E. Unosson, and H. Engqvist, “A dental cement capable of calcium phosphate formation on its surface during water storage,” European Cells and Materials, vol. 21, p. 35, 2011.
[8]
T. Kokubo and H. Takadama, “How useful is SBF in predicting in vivo bone bioactivity?” Biomaterials, vol. 27, no. 15, pp. 2907–2915, 2006.
[9]
H.-M. Kim, T. Himeno, T. Kokubo, and T. Nakamura, “Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid,” Biomaterials, vol. 26, no. 21, pp. 4366–4373, 2005.
[10]
H. M. Kim, “Ceramic bioactivity and related biomimetic strategy,” Current Opinion in Solid State and Materials Science, vol. 7, no. 4-5, pp. 289–299, 2003.
[11]
A. Faris, H. Engqvist, J. L??f, M. Ottosson, and L. Hermansson, “In vitro bioactivity of injectable ceramic orthopaedic cements,” Key Engineering Materials, vol. 309–311, pp. 833–836, 2006.
[12]
H. Engqvist, J. E. Schultz-Walz, J. L??f et al., “Chemical and biological integration of a mouldable bioactive ceramic material capable of forming apatite in vivo in teeth,” Biomaterials, vol. 25, no. 14, pp. 2781–2787, 2004.
[13]
H. Engqvist, M. Couillard, G. A. Botton, N. Axén, N. O. Ahnfelt, and L. Hennansson, “Chemical interactions between CA-aluminate implants and bone,” in Proceedings of the 28th International Conference on Advanced Ceramics and Composites, pp. 549–554, January 2004.
[14]
I. Standard, “ISO, 23317,” In Implants for surgery—In vitro evaluation for apatite-forming ability of implant materials, 2007.
[15]
C. H. Pameijer, O. Zmener, S. A. Serrano, and F. Garcia-Godoy, “Sealing properties of a calcium aluminate luting agent,” American Journal of Dentistry, vol. 23, no. 2, pp. 121–124, 2010.
[16]
S. R. Jefferies, C. H. Pameijer, D. Appleby, D. Boston, J. L??f, and P. O. Glantz, “One year clinical performance and post-operative sensitivity of a bioactive dental luting cement—a prospective clinical study,” Swedish Dental Journal, vol. 33, no. 4, pp. 193–199, 2009.
[17]
S. Jefferies, C. H. Pameijer, D. Appleby, and D. Boston, “One month and six month clinical performance of XeraCem,” Journal of Dental Research, vol. 88, p. 3146, 2009.
[18]
C. H. Pameijer, O. Zmener, F. Garcia-Godoy, and J. S. Alvarez-Serrano, “Sealing of XeraCem, and controls using a bacterial leakage model,” Journal of Dental Research, vol. 88, p. 3145, 2009.
[19]
S. R. Jefferies, J. L??f,, C. H. Pameijer, D. Boston, C. Galbraith, and L. Hermansson, “Physical properties of xeraCem,” Journal of Dental Research, vol. 87, p. 3100, 2008.
[20]
C. H. Pameijer, S. R. Jefferies, J. L??f, L. Hermansson, and E. Wiksell, “In vitro and in vivo biocompatibility tests of XeraCem,” Journal of Dental Research, vol. 87, p. 3097, 2008.
[21]
C. H. Pameijer, S. Jefferies, J. L??f, and L. Hermansson, “Microleakage evaluation of XeraCem in cemented crowns,” Journal of Dental Research, vol. 87, p. 3098, 2008.
[22]
C. H. Pameijer, S. R. Jefferies, J. L??f, and L. Hermansson, “A comparative crown retention test using XeraCem,” Journal of Dental Research, vol. 87, p. 3099, 2008.
[23]
J. L??f, F. Svahn, T. Jarmar, H. Engqvist, and C. H. Pameijer, “A comparative study of the bioactivity of three materials for dental applications,” Dental Materials, vol. 24, no. 5, pp. 653–659, 2008.
[24]
A. Bardow, D. Moe, B. Nyvad, and B. Nauntofte, “The buffer capacity and buffer systems of human whole saliva measured without loss of CO2,” Archives of Oral Biology, vol. 45, no. 1, pp. 1–12, 2000.
[25]
F. M. Lea, The Chemistry of Cement and Concrete, Edward Arnold Limited, 3rd edition, 1970.
[26]
S. A. Rodger and D. D. Double, “The chemistry of hydration of high alumina cement in the presence of accelerating and retarding admixtures,” Cement and Concrete Research, vol. 14, no. 1, pp. 73–82, 1984.
[27]
H. J. H. Brouwers, “The work of Powers and Brownyard revisited: part 1,” Cement and Concrete Research, vol. 34, no. 9, pp. 1697–1716, 2004.
[28]
H. J. H. Brouwers, “The work of Powers and Brownyard revisited: part 2,” Cement and Concrete Research, vol. 35, no. 10, pp. 1922–1936, 2005.
[29]
T. Matusinovi?, J. ?ipu?i?, and N. Vrbos, “Porosity-strength relation in calcium aluminate cement pastes,” Cement and Concrete Research, vol. 33, no. 11, pp. 1801–1806, 2003.
[30]
H. F. W. Taylor, Cement Chemistry, Tomas Telford Publishing, 2nd edition, 1997.
[31]
W. Xia, C. Lindahl, J. Lausmaa et al., “Biomineralized strontium-substituted apatite/titanium dioxide coating on titanium surfaces,” Acta Biomaterialia, vol. 6, no. 4, pp. 1591–1600, 2010.
[32]
A. L. Oliveira, R. L. Reis, and P. Li, “Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis,” Journal of Biomedical Materials Research, vol. 83, no. 1, pp. 258–265, 2007.
[33]
S. R. Jefferies, C. H. Pameijer, D. C. Appleby et al., “Prospective observation of a new bioactive luting cement: 2-year follow-up,” Journal of Prosthodontics, vol. 21, no. 1, pp. 33–41, 2011.
[34]
C. Dawes, “Rhythms in salivary flow rate and composition,” International Journal of Chronobiology, vol. 2, no. 3, pp. 253–279, 1974.
[35]
S. P. Humphrey and R. T. Williamson, “A review of saliva: normal composition, flow, and function,” The Journal of Prosthetic Dentistry, vol. 85, no. 2, pp. 162–169, 2001.
[36]
M. G. Gandolfi, P. Taddei, A. Tinti, and C. Prati, “Apatite-forming ability (bioactivity) of ProRoot MTA,” International Endodontic Journal, vol. 43, no. 10, pp. 917–929, 2010.
[37]
M. G. Gandolfi, P. Taddei, A. Tinti, E. S. De Dorigo, P. L. Rossi, and C. Prati, “Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions,” Clinical Oral Investigations, vol. 14, no. 6, pp. 659–668, 2010.