全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

In Vitro Effects of External Pressure Changes on the Sealing Ability under Simulated Diving Conditions

DOI: 10.5402/2012/418609

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aim. To measure and validate the permeability of pressure changes in correlation to different root filling techniques. Methods. Eighty extracted single-rooted teeth were randomly assigned to one of eight groups of ten teeth. Following standardized instrumentation and irrigation, root canal fillings were performed using either cold lateral condensation, a warm carrier-based gutta-percha obturation technique, a warm carrier-based Resilon, or warm gutta-percha compaction with the downpack/backfill technique. After insertion of a pressure sensor within the pulp chamber ten teeth of each group then underwent simulated dives with pressure measurement and the other ten a dye penetration test during simulated dives to 5.0 bar. Differences were analyzed statistically ( ) using one-way analysis of variance (ANOVA). Results. When the warm carrier-based gutta-percha obturation technique and vertical gutta-percha obturation techniques were used, there was significant lower intrapulpal pressure to experimental chamber pressure ( ). When cold lateral condensation or carrier-based Resilon as used, pressure was sometimes almost completely equalized. Conclusions. Warm gutta-percha obturation techniques provide a largely pressure-tight seal whereas the Resilon obturation technique and cold lateral condensation appear to be unsuitable to pressure changes. 1. Introduction Root canal fillings must meet a number of requirements. Not only must they be biocompatible and removable, but they must also tightly seal the root canal system. The effectiveness of the seal depends on the anatomy of the root canal system and especially on the shape of the canal and the type of mechanical preparation. It is undisputed that an effective seal can be technically achieved if the root canal is tapered from crown to apex [1]. Different materials and methods can be used to fill and seal a root canal. Differences mainly pertain to how filling materials are processed and whether accessory ramifications can be filled effectively [2]. Cold lateral condensation is still a widely accepted method of root canal obturation, although accessory ramifications can hardly be filled using this technique [3]. Apart from this technique, warm thermoplastic obturation methods in particular have become established in recent years [4]. These techniques use either carrier-based obturation material or simply heated filling material [5]. Many studies are available that have investigated the adaptation of root fillings to the root canal walls and the ability of filling materials to seal the root canal system. For

References

[1]  G. De-Deus, C. Murad, S. Paciornik, C. M. Reis, and T. Coutinho-Filho, “The effect of the canal-filled area on the bacterial leakage of oval-shaped canals,” International Endodontic Journal, vol. 41, no. 3, pp. 183–190, 2008.
[2]  R. L. Ellison, J. F. Corcoran, and R. M. Zillich, “Endodontic update: biologic and physico-chemical properties of commonly used root canal filling materials,” The Journal of the Michigan Dental Association, vol. 65, no. 3, pp. 125–131, 1983.
[3]  B. Dadresanfar, Z. Khalilak, M. Shiekholeslami, and S. Afshar, “Comparative study of the sealing ability of the lateral condensation technique and the BeeFill system after canal preparation by the Mtwo NiTi rotary system,” Journal of Oral Science, vol. 52, no. 2, pp. 281–285, 2010.
[4]  F. R. Liewehr, J. C. Kulild, and P. D. Primack, “Improved density of gutta-percha after warm lateral condensation,” Journal of Endodontics, vol. 19, no. 10, pp. 489–491, 1993.
[5]  C. Pirani, G. A. Pelliccioni, S. Marchionni, L. Montebugnoli, G. Piana, and C. Prati, “Effectiveness of three different retreatment techniques in canals filled with compacted gutta-percha or Thermafil: a scanning electron microscope study,” Journal of Endodontics, vol. 35, no. 10, pp. 1433–1440, 2009.
[6]  A. Madarati, M. S. Rekab, D. C. Watts, and A. Qualtrough, “Time-dependence of coronal seal of temporary materials used in endodontics,” Australian Endodontic Journal, vol. 34, no. 3, pp. 89–93, 2008.
[7]  D. M. Veríssimo and M. S. do Vale, “Methodologies for assessment of apical and coronal leakage of endodontic filling materials: a critical review,” Journal of Oral Science, vol. 48, no. 3, pp. 93–98, 2006.
[8]  M. Hamilton-Farrell and A. Bhattacharyya, “Barotrauma,” Injury, vol. 35, no. 4, pp. 359–370, 2004.
[9]  D. R. Leitch, “Complications of saturation diving,” Journal of the Royal Society of Medicine, vol. 78, no. 8, pp. 634–637, 1985.
[10]  R. E. Holowatyj, “Barodontalgia among flyers: a review of seven cases,” Journal of Canadian Dental Association, vol. 62, no. 7, pp. 578–584, 1996.
[11]  W. H. G. Goethe, H. Bater, and C. Laban, “Barodontalgia and barotrauma in the human teeth: findings in navy divers, frogmen, and submariners of the Federal Republic of Germany,” Military Medicine, vol. 154, no. 10, pp. 491–495, 1989.
[12]  J. Simons, B. Ibanez, S. Friedman, and M. Trope, “Leakage after lateral condensation with finger spreaders and D-11-T spreaders,” Journal of Endodontics, vol. 17, no. 3, pp. 101–104, 1991.
[13]  H. Shemesh, M. K. Wu, and P. R. Wesselink, “Leakage along apical root fillings with and without smear layer using two different leakage models: a two-month longitudinal ex vivo study,” International Endodontic Journal, vol. 39, no. 12, pp. 968–976, 2006.
[14]  M. L. Page, K. M. Hargreaves, and M. ElDeeb, “Comparison of concentric condensation technique with laterally condensed gutta-percha,” Journal of Endodontics, vol. 21, no. 6, pp. 308–313, 1995.
[15]  F. R. S. McMichen, G. Pearson, S. Rahbaran, and K. Gulabivala, “A comparative study of selected physical properties of five root-canal sealers,” International Endodontic Journal, vol. 36, no. 9, pp. 629–635, 2003.
[16]  A. C. B. Hollanda, C. R. A. De Estrela, D. A. De Decurcio, J. A. Silva, and C. Estrela, “Sealing ability of three commercial resin-based endodontic sealers,” General Dentistry, vol. 57, no. 4, pp. 368–373, 2009.
[17]  C. Gogos, V. Theodorou, N. Economides, P. Beltes, and I. Kolokouris, “Shear bond strength of AH-26 and Epiphany to composite resin and Resilon,” Journal of Endodontics, vol. 34, no. 11, pp. 1385–1387, 2008.
[18]  Z. Yilmaz, D. Deniz, B. Ozcelik et al., “Sealing efficiency of BeeFill 2in1 and System B/Obtura II versus single-cone and cold lateral compaction techniques,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 108, no. 6, pp. e51–e55, 2009.
[19]  E. A. Nelson, F. R. Liewehr, and L. A. West, “Increased density of gutta-percha using a controlled heat instrument with lateral condensation,” Journal of Endodontics, vol. 26, no. 12, pp. 748–750, 2000.
[20]  E. O. Onay, M. Ungor, S. Unver, H. Ari, and S. Belli, “An in vitro evaluation of the apical sealing ability of new polymeric endodontic filling systems,” Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontology, vol. 108, no. 2, pp. e49–e54, 2009.
[21]  G. De-Deus, F. Namen, and J. Galan, “Reduced long-term sealing ability of adhesive root fillings after water-storage stress,” Journal of Endodontics, vol. 34, no. 3, pp. 322–325, 2008.
[22]  D. Pasqualini, N. Scotti, L. Mollo et al., “Microbial leakage of gutta-percha and Resilon? root canal filling material: a comparative study using a new homogeneous assay for sequence detection,” Journal of Biomaterials Applications, vol. 22, no. 4, pp. 337–352, 2008.
[23]  F. Paqué and G. Sirtes, “Apical sealing ability of Resilon/Epiphany versus gutta-percha/AH Plus: immediate and 16-months leakage,” International Endodontic Journal, vol. 40, no. 9, pp. 722–729, 2007.
[24]  C. S. Lea, M. J. Apicella, P. Mines, P. P. Yancich, and M. H. Parker, “Comparison of the obturation density of cold lateral compaction versus warm vertical compaction using the continuous wave of condensation technique,” Journal of Endodontics, vol. 31, no. 1, pp. 37–39, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133