Aim. The aim of the present study was to compare the dimensional accuracy of stone casts obtained with vinyl polysiloxane molds through the double-impression technique with three pours into the same mold. Methods. A stainless steel master model was constructed simulating a three-unit fixed prosthesis. Twelve impressions were taken of this master model with addition silicone, using the double-impression technique. Three pours of type IV gypsum were then made into each mold, thus producing 36 casts. The pours were made 1 hour, 6 hours and 24 hours after the impression procedure. Next, intra- and interabutment measurements were made in a coordinate measuring machine. Results. Comparative analysis of the dimensional accuracy of stone casts resulting from multiple pours was not statistically significant in pours first and second ( ). These values, however, were statistically significant at third pour in the height in abutment 1 and upper distance interabutment. Conclusion. The wait time (1 hour, and 6 hours) observed before pouring the stone into the same molds did not cause significant dimensional accuracy of the casts. 1. Introduction In order to construct a fixed prosthesis, a stone die must be made by cutting the stone cast that was obtained through an impression technique. Separated from the cast, this die enables improved marginal adaptation of the prosthetic crown that will be constructed on it. Although current techniques for making removable stone dies have developed and become increasingly more accurate, the cutting out of a stone die results in significant dimensional change in the distances between abutments [1]. In this scenario, producing more than one cast from the same mold may be an option for preserving the marginal adaptation of prostheses—a result for which obtaining stone dies is required—while at the same time, preserving the dimensional accuracy of the distances between the prosthetic abutments [2]. A deficiency to making impressions in fixed prosthodontics is failure to follow basic principles inherent to the manipulation of impression materials. Stock trays are used extensively, and the importance of control of bulk is ignored. Putty/wash materials also are used extensively, usually in an inappropriate manner, resulting in impressions with less than optimal accuracy [3]. Since the most costly item of any oral rehabilitation treatment is the clinical time of the dental professional, the possibility of obtaining several casts from the same mold without changing their characteristics and dimensions could contribute to reducing the
References
[1]
K. Al-Abidi and A. Ellakwa, “The effect of adding a stone base on the accuracy of working casts using different types of dental stone,” Journal of Contemporary Dental Practice, vol. 7, no. 4, pp. 17–28, 2006.
[2]
S. M. Morgano, P. Milot, P. Ducharme, and L. Rose, “Ability of various impression materials to produce duplicate dies from successive impressions,” The Journal of Prosthetic Dentistry, vol. 73, no. 4, pp. 333–340, 1995.
[3]
T. E. Donovan and W. W. L. Chee, “A review of contemporary impression materials and techniques,” Dental Clinics of North America, vol. 48, no. 2, pp. 445–470, 2004.
[4]
J. Nissan, M. Gross, A. Shifman, and D. Assif, “Effect of wash bulk on the accuracy of polyvinyl siloxane putty-wash impressions,” Journal of Oral Rehabilitation, vol. 29, no. 4, pp. 357–361, 2002.
[5]
A. Y. J. Wu and T. E. Donovan, “The use of vacuum-formed resin sheets as spacers for putty-wash impressions,” Journal of Prosthetic Dentistry, vol. 97, no. 1, pp. 54–55, 2007.
[6]
M. Cardoso, M. F. Torres, E. J. Louren?o, and M. Telles Dde, “Dimensional changes in gypsum fragments bonded with cyanoacrylate,” The International Journal of Prosthodontics, vol. 20, no. 6, pp. 470–473, 2011.
[7]
J. J. Bock, R. A. Fuhrmann, and J. Setz, “The influence of different disinfectants on primary impression materials,” Quintessence International, vol. 39, no. 3, pp. e93–e98, 2008.
[8]
D. Kumar, A. U. Madihalli, K. R. K. Reddy, N. Rastogi, and N. T. Pradeep, “Elastomeric impression materials: a comparison of accuracy of multiple pours,” Journal of Contemporary Dental Practice, vol. 12, no. 4, pp. 272–278, 2011.
[9]
B. K. Al-Zarea and M. G. Sughaireen, “Comparative analysis of dimensional precision of different silicone impression materials,” Journal of Contemporary Dental Practice, vol. 12, no. 3, pp. 208–215, 2011.
[10]
S. Caputi and G. Varvara, “Dimensional accuracy of resultant casts made by a monophase, one-step and two-step, and a novel two-step putty/light-body impression technique: an in vitro study,” Journal of Prosthetic Dentistry, vol. 99, no. 4, pp. 274–281, 2008.
[11]
G. H. Johnson and R. G. Craig, “Accuracy of four types of rubber impression materials compared with time of pour and a repeat pour of models,” The Journal of Prosthetic Dentistry, vol. 53, no. 4, pp. 484–490, 1985.
[12]
J. R. Broilo, P. C. Ghiggi, G. A. Borges, L. H. Burnett Jr, and A. M. Spohr, “Accuracy of the second pour casts using dual-arch trays,” Stomatologija, vol. 13, no. 1, pp. 15–18, 2011.
[13]
K. S. Dounis, G. Dounis, M. M. Ditmyer, and G. J. Ziebert, “Accuracy of successive casts for full-arch fixed prostheses,” The International Journal of Prosthodontics, vol. 23, no. 5, pp. 446–449, 2010.
[14]
A. H. L. Tjan, H. Nemetz, L. T. P. Nguyen, and R. Contino, “Effect of tray space on the accuracy of monophasic polyvinylsiloxane impressions,” The Journal of Prosthetic Dentistry, vol. 68, no. 1, pp. 19–28, 1992.
[15]
S. Thongthammachat, B. K. Moore, M. T. Barco, S. Hovijitra, D. T. Brown, and C. J. Andres, “Dimensional accuracy of dental casts: influence of tray material, impression material, and time,” Journal of Prosthodontics, vol. 11, no. 2, pp. 98–108, 2002.
[16]
P. T. Williams, D. G. Jackson, and W. Bergman, “An evaluation of the time-dependent dimensional stability of eleven elastomeric impression materials,” The Journal of Prosthetic Dentistry, vol. 52, no. 1, pp. 120–125, 1984.
[17]
S. Holst, M. B. Blatz, M. Bergler, M. Goellner, and M. Wichmann, “Influence of impression material and time on the 3-dimensional accuracy of implant impressions,” Quintessence International, vol. 38, no. 1, pp. 67–73, 2007.
[18]
R. G. Luthardt, P. Kühmstedt, and M. H. Walter, “A new method for the computer-aided evaluation of three-dimensional changes in gypsum materials,” Dental Materials, vol. 19, no. 1, pp. 19–24, 2003.