全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

An Investigation on Dislocation Density in Cold-Rolled Copper Using Electrochemical Impedance Spectroscopy

DOI: 10.1155/2013/921825

Full-Text   Cite this paper   Add to My Lib

Abstract:

Variation of electrochemical impedance with dislocation density was investigated using electrochemical impedance spectroscopy (EIS). For this purpose, EIS measurements were carried out on 10, 20, 30, 40, and 50% cold-rolled commercially pure copper in 0.1?M NaCl (pH = 2) solution. Nyquist plots illustrated that the electrochemical reactions are controlled by both charge transfer and diffusion process. Increasing dislocation density, the magnitude of electrochemical impedance of samples was decreased. Decreasing magnitude of impedance at intermediate frequencies indicated increasing double-layer capacitance. Charge transfer resistance decreased from value 329.6??cm2 for annealed sample to 186.3??cm2 for sample with maximum dislocation density ( ? ). Phase angles were lower for samples that contained more dislocation density, indicating more tendencies to loss of electrons and releasing atoms into electrolyte. 1. Introduction It has been reported that after deformation of a metal more than yield limit, hardening occurs which is due to multiplication and rearrangement of dislocations and the more severe the cold deformation, the more generation of dislocations [1–4]. Tensile properties of metals such as yield strength, ultimate tensile strength, and ductility depend heavily on density of dislocations. Also, dislocation density plays a significant role on brittle to ductile transition, fatigue, hardness, work hardening, and plastic behavior of metals and alloys [5–8]. Furthermore, dislocations have considerable effect on physical properties of metals such as density [9–12], thermal conductivity [13, 14], and electrical resistivity [9, 13, 14]. In this respect, some researchers [5, 15, 16] have investigated density of dislocations by ultrasound waves and have proposed some relationships between dislocation density and changes in the speed of elastic waves propagation. Sablik and Landgraf [17, 18], Kobayashi et al. [19], and Yaegashi [20] reported some relationships between dislocation density and magnetic properties. Kikuchi et al. [21] investigated the relation between AC permeability and dislocation density in pure iron as well. Also, other researchers tried to correlate dislocation density with stored energy and critical transformation temperatures using differential scanning calorimetry [4, 7, 22] and high-resolution dilatometry [23], respectively. The strain field and energy of dislocation line intersects with metal surface increase the susceptibility of the metal to corrosion [24–26]. Since corrosion is an electrochemical degradation, electrochemical

References

[1]  S. C. Wang, Z. Zhu, and M. J. Starink, “Estimation of dislocation densities in cold rolled Al-Mg-Cu-Mn alloys by combination of yield strength data, EBSD and strength models,” Journal of Microscopy, vol. 217, no. 2, pp. 174–178, 2005.
[2]  A. ?iuplys, J. Vilys, V. ?iuplys, and V. Kvedaras, “Investigation of dislocation structure of low carbon steel during static loading,” Mechanika, vol. 4, pp. 59–66, 2006.
[3]  H. D. Chandler, “Work hardening characteristics of copper from constant strain rate and stress relaxation testing,” Materials Science and Engineering A, vol. 506, no. 1-2, pp. 130–134, 2009.
[4]  M. Kazeminezhad, “Relationship between the stored energy and indentation hardness of copper after compression test: models and measurements,” Journal of Materials Science, vol. 43, no. 10, pp. 3500–3504, 2008.
[5]  A. Maurel, V. Pagneux, F. Barra, and F. Lund, “Ultrasound as a probe of plasticity? The interaction of elastic waves with dislocations,” International Journal of Bifurcation and Chaos, vol. 19, no. 8, pp. 2765–2781, 2009.
[6]  Y. B. Wang, J. C. Ho, Y. Cao et al., “Dislocation density evolution during high pressure torsion of a nanocrystalline Ni-Fe alloy,” Applied Physics Letters, vol. 94, Article ID 091911, 3 pages, 2009.
[7]  M. Verdier, I. Groma, L. Flandin, J. Lendvai, Y. Bréchet, and P. Guyot, “Dislocation densities and stored energy after cold rolling of Al-Mg alloys: investigations by resistivity and differential scanning calorimetry,” Scripta Materialia, vol. 37, no. 4, pp. 449–454, 1997.
[8]  S. Gra?a, R. Cola?o, P. A. Carvalho, and R. Vilar, “Determination of dislocation density from hardness measurements in metals,” Materials Letters, vol. 62, pp. 3812–3814, 2008.
[9]  G. E. Dieter and D. Bacon, Mechanical Metallurgy, McGraw-Hill, Singapore, 1988.
[10]  F. Garofalo and H. A. Wriedt, “Density change in an austenitic stainless steel deformed in tension or compression,” Acta Metallurgica, vol. 10, no. 11, pp. 1007–1012, 1962.
[11]  R. E. Smallman and R. J. Bishop, Modern Physical Metallurgy and Materials Engineering, Elsevier Science, 1999.
[12]  R. E. Smallman and A. H. W. Ngan, Physical Metallurgy and Advanced Materials, Elsevier, Burlington, Vt, USA, 2007.
[13]  D. B. Sirdeshmukh, L. Sirdeshmukh, and K. G. Subhadra, Atomistic Properties of Solids, Springer, New York, NY, USA, 2011.
[14]  F. Khodabakhshi and M. Kazeminezhad, “The effect of constrained groove pressing on grain size, dislocation density and electrical resistivity of low carbon steel,” Materials and Design, vol. 32, no. 6, pp. 3280–3286, 2011.
[15]  N. Mujica, M. A. T. Cerda, R. Espinoza, J. Lisoni, and F. Lund, “Ultrasound as a probe of dislocation density in aluminum,” Acta Materialia, vol. 60, pp. 5828–5837, 2012.
[16]  F. Barra, A. Caru, M. T. Cerda et al., “Measuring dislocation density in aluminum with resonant ultrasound spectroscopy,” International Journal of Bifurcation and Chaos, vol. 19, no. 10, pp. 3561–3565, 2009.
[17]  M. J. Sablik, “Modeling the effect of grain size and dislocation density on hysteretic magnetic properties in steels,” Journal of Applied Physics, vol. 89, no. 10, pp. 5610–5613, 2001.
[18]  M. J. Sablik and F. J. G. Landgraf, “Modeling microstructural effects on hysteresis loops with the same maximum flux density,” IEEE Transactions on Magnetics, vol. 39, no. 5, pp. 2528–2530, 2003.
[19]  S. Kobayashi, T. Kimura, S. Takahashi, Y. Kamada, and H. Kikuchi, “Quantitative evaluation of dislocation density using minor-loop scaling relations,” Journal of Magnetism and Magnetic Materials, vol. 320, no. 20, pp. e551–e555, 2008.
[20]  K. Yaegashi, “Dependence of magnetic susceptibility on dislocation density in tensile deformed iron and Mn-steel,” ISIJ International, vol. 47, no. 2, pp. 327–332, 2007.
[21]  H. Kikuchi, Y. Henmi, T. Liu et al., “The relation between AC permeability and dislocation density and grain size in pure iron,” International Journal of Applied Electromagnetics and Mechanics, vol. 25, no. 1–4, pp. 341–346, 2007.
[22]  A. Karimi Taheri, Kazeminezhad, and A. Kiet Tieu, “theoretical and experimental evaluation of dislocation density in a workpiece after forming,” Iranian Journal of Materials Science & Engineering, vol. 4, pp. 1–8, 2007.
[23]  C. Garcia-Mateo, F. G. Caballero, C. Capdevila, and C. G. D. Andres, “Estimation of dislocation density in bainitic microstructures using high-resolution dilatometry,” Scripta Materialia, vol. 61, no. 9, pp. 855–858, 2009.
[24]  H. Miyamoto, K. Harada, T. Mimaki, A. Vinogradov, and S. Hashimoto, “Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing,” Corrosion Science, vol. 50, no. 5, pp. 1215–1220, 2008.
[25]  W. Li and D. Y. Li, “Variations of work function and corrosion behaviors of deformed copper surfaces,” Applied Surface Science, vol. 240, no. 1–4, pp. 388–395, 2005.
[26]  S. Yin and D. Y. Li, “Effects of prior cold work on corrosion and corrosive wear of copper in HNO3 and NaCl solutions,” Materials Science and Engineering A, vol. 394, no. 1-2, pp. 266–276, 2005.
[27]  R. G. Kelly, J. R. Scully, D. W. Shoesmith, and R. G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering, Marcel Dekker, 2002.
[28]  A. S. Hamdy, E. El-Shenawy, and T. El-Bitar, “Electrochemical impedance spectroscopy study of the corrosion behavior of some niobium bearing stainless steels in 3.5% NaCl,” International Journal of Electrochemical Science, vol. 1, pp. 171–180, 2006.
[29]  N. D. Cogger, An Introduction to Electrochemical Impedance Measurement, Solartron Analytical, 1999.
[30]  E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, John Wiley & Sons, 2005.
[31]  F. Scholz, Electroanalytical Methods: Guide to Experiments and Applications, Springer, 2010.
[32]  X. Z. Yuan, C. Song, H. Wang, and J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells: Fundamentals and Applications, Springer, 2009.
[33]  F. Barlat, M. V. Glazov, J. C. Brem, and D. J. Lege, “A simple model for dislocation behavior, strain and strain rate hardening evolution in deforming aluminum alloys,” International Journal of Plasticity, vol. 18, no. 7, pp. 919–939, 2002.
[34]  R. Abbaschian, R. E. Reed-Hill, and L. Abbaschian, Physical Metallurgy Principles, Cengage Learning, Stamford, Conn, USA, 2009.
[35]  E. Hosseini and M. Kazeminezhad, “Dislocation structure and strength evolution of heavily deformed tantalum,” International Journal of Refractory Metals and Hard Materials, vol. 27, no. 3, pp. 605–610, 2009.
[36]  W. D. Callister, Materials Science and Engineering: An Introduction, John Wiley & Sons, New York, NY, USA, 2007.
[37]  E. Schafler, M. Zehetbauer, and T. Ungàr, “Measurement of screw and edge dislocation density by means of X-ray Bragg profile analysis,” Materials Science and Engineering A, vol. 319–321, pp. 220–223, 2001.
[38]  A. Robin, G. A. S. Martinez, and P. A. Suzuki, “Effect of cold-working process on corrosion behavior of copper,” Materials & Design, vol. 34, pp. 319–324, 2012.
[39]  C. Fonseca and M. A. Barbosa, “Corrosion behaviour of titanium in biofluids containing H2O2 studied by electrochemical impedance spectroscopy,” Corrosion Science, vol. 43, no. 3, pp. 547–559, 2001.
[40]  C. L. Zeng, W. Wang, and W. T. Wu, “Electrochemical impedance models for molten salt corrosion,” Corrosion Science, vol. 43, no. 4, pp. 787–801, 2001.
[41]  E. M. Sherif and S.-M. Park, “2-Amino-5-ethyl-1,3,4-thiadiazole as a corrosion inhibitor for copper in 3.0% NaCl solutions,” Corrosion Science, vol. 48, pp. 4065–4079, 2006.
[42]  L. Hu, S. Zhang, W. Li, and B. Hou, “Electrochemical and thermodynamic investigation of diniconazole and triadimefon as corrosion inhibitors for copper in synthetic seawater,” Corrosion Science, vol. 52, no. 9, pp. 2891–2896, 2010.
[43]  E. S. M. Sherif, “Effects of 2-amino-5-(ethylthio)-1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in 3% NaCl solutions,” Applied Surface Science, vol. 252, no. 24, pp. 8615–8623, 2006.
[44]  M. Cubillos, M. Sancy, J. Pavez et al., “Influence of 8-aminoquinoline on the corrosion behaviour of copper in 0.1 M NaCl,” Electrochimica Acta, vol. 55, pp. 2782–2792, 2010.
[45]  S. M. Mili? and M. M. Antonijevi?, “Some aspects of copper corrosion in presence of benzotriazole and chloride ions,” Corrosion Science, vol. 51, pp. 28–34, 2009.
[46]  E. M. Sherif, R. M. Erasmus, and J. D. Comins, “Corrosion of copper in aerated synthetic sea water solutions and its inhibition by 3-amino-1,2,4-triazole,” Journal of Colloid and Interface Science, vol. 309, no. 2, pp. 470–477, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133