全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chemical Stability of Chromium Carbide and Chromium Nitride Powders Compared with Chromium Metal in Synthetic Biological Solutions

DOI: 10.5402/2012/379697

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chromium carbide (Cr-C) and chromium nitride (Cr-N) powders were compared with a chromium metal powder (Cr-metal) to evaluate their chemical stability in solution. All three powders were exposed in five different synthetic biological solutions of varying pH and chemical composition simulating selected human exposure conditions. Characterisation of the powders, using GI-XRD, revealed that the predominant bulk crystalline phases were Cr7C3 and Cr2N for Cr-C and Cr-N respectively. The outermost surface of Cr-C, determined by XPS, contained Cr7C3 and Cr2O3 and the corresponding measurement on Cr-N revealed Cr2N and CrN apart from Cr2O3. The presence of Cr2O3 was verified by XPS investigations of the Cr-metal powder. The mean particle size was similar for Cr-metal and Cr-N but slightly smaller for Cr-C. All three powders were poorly soluble and released very low amounts of chromium (<0.00015?μg Cr/μg loaded particles) independent on test solution. Slightly higher chromium concentrations were determined in the more acidic media (pH 1.7 and 4.5) compared with the near-neutral solutions (pH 7.2 and 7.4). Cr-C released the lowest amount of Cr despite having the largest surface area a feature attributed to the strong covalent bonds within the matrix. 1. Introduction Chromium metal and chromium compounds are used in a wide variety of applications ranging from alloying to tanning of animal hides to pigmentation. The extensive use raises questions concerning the potential adverse effect on human health and on the environment. Within the European Community regulatory frame work, REACH, (Registration, Evaluation, Authorization and Restriction of Chemicals), the responsibility to ensure that all products are safe for use lies on the industry and they are consequently required to provide information on the product properties to allow safe handling. Elaborate studies have been performed generating data on release, dissolution, and solubility aspects of chromium and chromium-containing alloys such as stainless steels and ferrochromium alloys [1–9], data that has been utilised within the framework of the European chemicals legislation (REACH) implemented in 2007. Bioaccessibility and environmental impact aspects of chromium have been discussed by, for example, [9–11]. Dissolution studies concerning chromium-containing materials like chromium carbide and chromium nitride are, however, much scarcer and have not been performed with the purpose to evaluate interactions with the environment or the human body [12, 13]. Both chromium carbide and chromium nitride are commonly used

References

[1]  Y. Hedberg, K. Midander, and I. O. Wallinder, “Particles, sweat, and tears: a comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact,” Integrated Environmental Assessment and Management, vol. 6, no. 3, pp. 456–468, 2010.
[2]  K. Midander, A. D. Frutos, Y. Hedberg, G. Darrie, and I. O. Wallinder, “Bioaccessibility studies of ferro-chromium alloy particles for a simulated inhalation scenario: a comparative study with the pure metals and stainless steel,” Integrated Environmental Assessment and Management, vol. 6, no. 3, pp. 441–455, 2010.
[3]  M. Huvinen, A. M?kitie, H. J?rventaus et al., “Nasal cell micronuclei, cytology and clinical symptoms in stainless steel production workers exposed to chromium,” Mutagenesis, vol. 17, no. 5, pp. 425–429, 2002.
[4]  M. Huvinen, J. Uitti, P. Oksa, P. Palmroos, and P. Laippala, “Respiratory health effects of long-term exposure to different chromium species in stainless steel production,” Occupational Medicine, vol. 52, no. 4, pp. 203–212, 2002.
[5]  G. Hultquist, M. Seo, T. Leitner, C. Leygraf, and N. Sato, “The dissolution behaviour of iron, chromium, molybdenum and copper from pure metals and from ferritic stainless steels,” Corrosion Science, vol. 27, no. 9, pp. 937–946, 1987.
[6]  H. Y. Park and T. R. Shearer, “In vitro release of nickel and chromium from simulated orthodontic appliances,” American Journal of Orthodontics, vol. 84, no. 2, pp. 156–159, 1983.
[7]  Y. Hedberg, J. Hedberg, Y. Liu, and I. O. Wallinder, “Complexation- and ligand-induced metal release from 316L particles: importance of particle size and crystallographic structure,” BioMetals, pp. 1099–1114, 2011.
[8]  Y. Hedberg and I. O. Wallinder, “Transformation/dissolution studies on the release of iron and chromium from particles of alloys compared with their pure metals and selected metal oxides,” Materials and Corrosion, vol. 62, no. 9999, 2011.
[9]  V. Riihim?ki and M. Luotamo, Health Risk Assessment Report for Metallic Chromium and Trivalent Chromium, International Chromium Development Association, 2006.
[10]  A. Broadway, M. R. Cave, J. Wragg et al., “Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment,” Science of the Total Environment, vol. 409, no. 2, pp. 267–277, 2010.
[11]  Z. X. Wang, J. Q. Chen, L. Y. Chai, Z. H. Yang, S. H. Huang, and Y. Zheng, “Environmental impact and site-specific human health risks of chromium in the vicinity of a ferro-alloy manufactory, China,” Journal of Hazardous Materials, vol. 190, no. 1–3, pp. 980–985, 2011.
[12]  V. N. Klimenko, “The strength of chromium carbide hard alloys,” Soviet Powder Metallurgy and Metal Ceramics, vol. 3, no. 5, pp. 396–399, 1965.
[13]  M. D. Lyutaya and O. P. Kulik, “Chemical properties of nitrides of some transition metals,” Soviet Powder Metallurgy and Metal Ceramics, vol. 9, no. 10, pp. 821–826, 1970.
[14]  C. K. Lee, “Electrochemical behaviour of chromium nitride coatings with various preferred orientations deposited on steel by unbalanced magnetron sputtering,” Materials Science and Technology, vol. 22, no. 6, pp. 653–660, 2006.
[15]  F. Cai, X. Huang, Q. Yang, R. Wei, and D. Nagy, “Microstructure and tribological properties of CrN and CrSiCN coatings,” Surface and Coatings Technology, vol. 205, no. 1, pp. 182–188, 2010.
[16]  P. Engel, G. Schwarz, and G. K. Wolf, “Corrosion and mechanical studies of chromium nitride films prepared by ion-beam-assisted deposition,” Surface and Coatings Technology, vol. 98, no. 1–3, pp. 1002–1007, 1998.
[17]  Y. Ishikawa, S. Kuroda, J. Kawakita, Y. Sakamoto, and M. Takaya, “Sliding wear properties of HVOF sprayed WC-20%Cr3C2–7%Ni cermet coatings,” Surface and Coatings Technology, vol. 201, no. 8, pp. 4718–4727, 2007.
[18]  R. F. A. Jargelius-Pettersson, “Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels,” Corrosion Science, vol. 41, no. 8, pp. 1639–1664, 1999.
[19]  M. Taguchi and J. Kurihara, “Effect of surface nitriding on corrosion resistance of chromium in sulfuric acid solution,” Materials Transactions, vol. 32, no. 12, pp. 1170–1176, 1991.
[20]  O. S. Yurchenko, V. M. Knyazheva, Y. P. Kolosvetov, S. G. Babich, and V. B. Kozhevnikov, “Corrosion and electrochemical properties of hot-pressed chromium nitride,” Soviet Powder Metallurgy and Metal Ceramics, vol. 26, no. 5, pp. 388–391, 1987.
[21]  S. M. Aouadi, D. M. Mihut, M. L. Kuruppu, S. R. Kirkpatrick, and S. L. Rohde, “Spectroscopic ellipsometry measurements of chromium nitride coatings,” Journal of Vacuum Science and Technology, Part A, vol. 19, no. 6, pp. 2800–2804, 2001.
[22]  M. C. Biesinger, C. Brown, J. R. Mycroft, R. D. Davidson, and N. S. McIntyre, “X-ray photoelectron spectroscopy studies of chromium compounds,” Surface and Interface Analysis, vol. 36, no. 12, pp. 1550–1563, 2004.
[23]  M. Detroye, F. Reniers, C. Buess-Herman, and J. Vereecken, “AES-XPS study of chromium carbides and chromium iron carbides,” Applied Surface Science, vol. 144-145, no. 1–4, pp. 78–82, 1999.
[24]  A. Lippitz and T. Hübert, “XPS investigations of chromium nitride thin films,” Surface and Coatings Technology, vol. 200, no. 1–4, pp. 250–253, 2005.
[25]  Z. Han, J. Tian, Q. Lai, X. Yu, and G. Li, “Effect of N2 partial pressure on the microstructure and mechanical properties of magnetron sputtered CrNx films,” Surface and Coatings Technology, vol. 162, no. 2-3, pp. 189–193, 2003.
[26]  S. C. Hamel, B. Buckley, and P. J. Lioy, “Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid,” Environmental Science and Technology, vol. 32, no. 3, pp. 358–362, 1998.
[27]  ASTM, “Standard test method for determining extractability of metals from art materials,” Annual Book of ASTM Standards, 2003.
[28]  W. Stopford, J. Turner, D. Cappellini, and T. Brock, “Bioaccessibility testing of cobalt compounds,” Journal of Environmental Monitoring, vol. 5, no. 4, pp. 675–680, 2003.
[29]  “Reference test method for release of nickel from products intended to come into direct and prolonged contact with the skin,” European Standard, EN1811, 1998.
[30]  A. De Meringo, C. Morscheidt, S. Thelohan, and H. Tiesler, “In vitro assessment of biodurability: acellular systems,” Environmental Health Perspectives, vol. 102, no. 5, pp. 47–53, 1994.
[31]  A. Norlin, J. Pan, and C. Leygraf, “Investigation of interfacial capacitance of Pt, Ti and TiN coated electrodes by electrochemical impedance spectroscopy,” Biomolecular Engineering, vol. 19, no. 2–6, pp. 67–71, 2002.
[32]  A. Sankaran, P. K. Ajilumar, M. Kamruddin et al., “Gas phase nitridation of chromium plated stainless steel,” in Proceedings of the International Symposium of Research Students on Material Science and Engineering, 2004.
[33]  J. Lin, B. Mishra, J. J. Moore, and W. D. Sproul, “A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses,” Surface and Coatings Technology, vol. 202, no. 14, pp. 3272–3283, 2008.
[34]  P. Stefanov, D. Stoychev, M. Stoycheva, and T. Marinova, “XPS and SEM studies of chromium oxide films chemically formed on stainless steel 316 L,” Materials Chemistry and Physics, vol. 65, no. 2, pp. 212–215, 2000.
[35]  M. ?ekada, P. Panjan, M. Ma?ek, and P. ?míd, “Comparison of structural and chemical properties of Cr-based hard coatings,” Surface and Coatings Technology, vol. 151-152, pp. 31–35, 2002.
[36]  F. Maury, D. Oquab, J. C. Manse, R. Morancho, J. F. Nowak, and J. P. Gauthier, “Structural characterization of chromium carbide coatings deposited at low temperature by low pressure chemical vapour decomposition using dicumene chromium,” Surface and Coatings Technology, vol. 41, no. 1, pp. 51–61, 1990.
[37]  G. Herting, I. Odnevall Wallinder, and C. Leygraf, “A comparison of release rates of Cr, Ni, and Fe from stainless steel alloys and the pure metals exposed to simulated rain events,” Journal of the Electrochemical Society, vol. 152, no. 1, pp. B23–B29, 2005.
[38]  Y. Hedberg, J. Gustafsson, H. L. Karlsson, L. M?ller, and I. O. Wallinder, “Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective,” Particle and Fibre Toxicology, vol. 7, article no. 23, 2010.
[39]  D. Music, U. Kreissig, R. Mertens, and J. M. Schneider, “Electronic structure and mechanical properties of Cr7C3,” Physics Letters, Section A, vol. 326, no. 5-6, pp. 473–476, 2004.
[40]  K. E. Burke, “Chemical extraction of refractory inclusions from iron- and nickel-base alloys,” Metallography, vol. 8, no. 6, pp. 473–488, 1975.
[41]  R. F. Carbonaro, B. N. Gray, C. F. Whitehead, and A. T. Stone, “Carboxylate-containing chelating agent interactions with amorphous chromium hydroxide: adsorption and dissolution,” Geochimica et Cosmochimica Acta, vol. 72, no. 13, pp. 3241–3257, 2008.
[42]  Y. Zhang, N. Kallay, and E. Matijevi?, “Interactions of metal hydrous oxides with chelating agents. 7. Hematite-oxalic acid and -citric acid systems,” Langmuir, vol. 1, no. 2, pp. 201–206, 1985.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133