Synthesized organic chemicals, used as inhibitors in mitigating the corrosion of huge quantities of steel articles, pose a major threat to the global environmental problems and health hazards. Naturally occurring products which had been used for natural medication purposes, since the human civilization, are found to inhibit corrosion of steel. Electrochemical studies of the effects of black pepper, garlic, yeast, and coffee on acid corrosion of steel have shown that the corrosion current decreases by manyfold with increase in concentration of the inhibitors. These green inhibitors have been found to get adsorbed maximum up to 70–90%. The polarizing effect is more on cathodic reactions than on anodic reactions, acting as cathodic inhibitor, while a few behaves as anodic to mixed inhibitor. Mechanisms of adsorption are investigated by Frumkin, Temkin, and Langmuir isotherms. The free energy of adsorption is found to be between ?15 and ?40?kJ/m for most inhibitors, indicating the phenomena of physical adsorption. 1. Introduction Mild steel articles are prone to severe degradation in HCl. As a corrosion prevention and protection method, application of inhibitor is very popular. A number of heterocyclic compounds with N, S, and O as hetero atoms are proved to be effective corrosion inhibitors [1, 2], and the screening of synthetic heterocyclic compounds is still being continued. Though many synthetic compounds showed good anticorrosive activity, most of them are highly toxic to both human beings and environment. The safety and environmental issues of corrosion inhibitors arisen in industries have always been a global concern. These inhibitors may cause the reversible (temporary) or irreversible (permanent) damage to organ system, namely, kidneys or liver, or to disturb a biochemical process or to disturb an enzyme system at some site in the body. The toxicity may manifest either during the synthesis of the compound or during its applications. These toxic effects have led to the use of natural products as anticorrosion agents which are ecofriendly and harmless [3]. In recent days many alternative ecofriendly corrosion inhibitors have been developed, they range from rare earth elements [4] to organic compounds [5–8]. A few natural products such as plant extracts and animal proteins were reported [9] to have been used in pickling acid bath. But detailed studies of corrosion rate determination and adsorption of natural products as green inhibitors are very limited [10, 11]. In the present investigation, mitigation of corrosion of low carbon steel has been
References
[1]
F. Bentiss, M. Traisnel, and M. Lagrenee, “The substituted 1,3,4-oxadiazoles: a new class of corrosion inhibitors of mild steel in acidic media,” Corrosion Science, vol. 42, no. 1, pp. 127–146, 2000.
[2]
G. Schmitt, “Application of inhibitors for acid media: report prepared for the european federation of corrosion working party on inhibitors,” British Corrosion Journal, vol. 19, no. 4, pp. 165–176, 1984.
[3]
P. B. Raja and M. G. Sethuraman, “Natural products as corrosion inhibitor for metals in corrosive media—a review,” Materials Letters, vol. 62, no. 1, pp. 113–116, 2008.
[4]
M. A. Arenas, A. Conde, and J. J. De Damborenea, “Cerium: a suitable green corrosion inhibitor for tinplate,” Corrosion Science, vol. 44, no. 3, pp. 511–520, 2002.
[5]
M. Sanaa El-Sawy, M. Yosreya Abu-Ayana, and A. Fikry Abdel-Mohdy, “Some chitin/chitosan derivatives for corrosion protection and waste water treatments,” Anti-Corrosion Methods and Materials, vol. 48, no. 4, pp. 227–235, 2001.
[6]
E. Cano, P. Pinilla, J. L. Polo, and J. M. Bastidas, “Copper corrosion inhibition by fast green, fuchsin acid and basic compounds in citric acid solution,” Materials and Corrosion, vol. 54, no. 4, pp. 222–228, 2003.
[7]
Y. W. Kim, J. G. Kim, and D. J. Choi, “Development of a blended corrosion, scale, and microorganism inhibitor for open recirculating cooling systems,” Materials and Corrosion, vol. 52, no. 9, pp. 697–704, 2001.
[8]
G. Moretti, F. Guidi, and G. Grion, “Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid,” Corrosion Science, vol. 46, no. 2, pp. 387–403, 2004.
[9]
P. B. Raja and M. G. Sethuraman, “Natural products as corrosion inhibitor for metals in corrosive media—a review,” Materials Letters, vol. 62, no. 1, pp. 113–116, 2008.
[10]
C. H. Wu, H. N. Murthy, E. J. Hahn, H. L. Lee, and K. Y. Paek, “Efficient extraction of caffeic acid derivatives from adventitious roots of echinacea purpurea,” Czech Journal of Food Sciences, vol. 26, no. 4, pp. 254–258, 2008.
[11]
M. Badiea and K. N. Mohana, “Corrosion mechanism of steel and adsorption thermodynamics,” Journal of Materials Engineering and Performance, vol. 18, no. 9, pp. 1264–1271, 2009.
[12]
R. K. Bhardwaj, H. Glaeser, L. Becquemont, U. Klotz, S. K. Gupta, and M. F. Fromm, “Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4,” Journal of Pharmacology and Experimental Therapeutics, vol. 302, no. 2, pp. 645–650, 2002.
E. A. Yamada and V. C. Sgarbieri, “Yeast (Saccharomyces cerevisiae) protein concentrate: preparation, chemical composition, and nutritional and functional properties,” Journal of Agricultural and Food Chemistry, vol. 53, no. 10, pp. 3931–3936, 2005.