全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synergistic Effect of KI on Corrosion Inhibition of Mild Steel by Polynuclear Schiff Base in Sulphuric Acid

DOI: 10.5402/2012/425878

Full-Text   Cite this paper   Add to My Lib

Abstract:

Synergistic effect of KI on the corrosion inhibition efficiency of polynuclear Schiff base, anthracene-9(10H)-one-3-aminopropanoic acid (A9O3AP), on mild steel (MS) in 0.5?M sulphuric acid solution has been investigated using weight loss measurements, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization studies. The results show that inhibition efficiencies on MS increase with increase in concentration of the inhibitor and enhancement in inhibition efficiency was observed on addition of potassium iodide due to synergism. The adsorptions, of inhibitor and inhibitor + KI on the surfaces of the corroding metal obey Freundlich and Langmuir isotherms, respectively. Polarization studies revealed that A9O3AP acts as a mixed type inhibitor. Thermodynamic parameters ( ; ) were calculated using the adsorption isotherms. A probable synergismtic mechanism is proposed. 1. Introduction The use of certain organic compounds as inhibitors is the most practical method to prevent corrosion of the mild steel (MS) in acidic media [1, 2]. Compounds with π-bonds generally exhibit good inhibitive properties due to interaction of π-orbital with the metal surface [3]. Schiff bases are organic molecules possessing azomethine linkage and many of them act as effective potential corrosion inhibitors [4–7]. The addition of halide ions to sulphuric acid solutions containing organic inhibitors has been found to stabilize the adsorption of organic cations, leading to improved inhibition efficiency. The synergistic effect of the halides have been observed to increase in the order Cl-< Br-< I-. Due to large size and ease of polarizability, iodide (I-) shows the highest synergistic effect [8–11]. The present investigation was undertaken to examine the corrosion inhibition behavior and synergism mechanism [12, 13] with I- of a novel polynuclear Schiff base (A9O3AP) derived from anthracene-9 (10H)-one and 3-aminopropanoic acid in 0.5?M H2SO4 solution on MS at 303?K. 2. Experimental 2.1. Inhibitor Polynuclear Schiff base (A9O3AP) was obtained by the condensation of equimolar mixture of anthracene-9(10H)-one and 3-aminopropanoic acid in ethanol. The reaction mixture was refluxed for 5 hours, cooled by keeping overnight to obtain yellow coloured compound, filtered, washed, and dried. Figure 1 shows the molecular structure of polynuclear Schiff base A9O3AP. Anal.calcd for C17H15NO2: C, 76.88; H, 5.65; N, 5.28%. Found. C, 75.96; H, 6.13; N, 4.95%; m.p. = 240°C; IR (KBr): ?cm?1, ?cm?1. 1Hnmr: 12.19, 13Cnmr: ?ppm. Figure 1: Molecular structure of A9O3AP. 2.2. Solutions The

References

[1]  O. James, N. C. Oforka, and O. K. Abiola, “Inhibition of acid corrosion of mild steel by pyridoxal and pyridoxol hydrochlorides,” International Journal of Electrochemical Science, vol. 2, pp. 278–284, 2007.
[2]  S. A. Abd El-Maksoud, “The effect of organic compounds on the electrochemical behaviour of steel in acidic media. A review,” International Journal of Electrochemical Science, vol. 3, pp. 528–555, 2008.
[3]  E. E. Ebenso, P. C. Okafor, O. E. Offiong, B. I. Ita, U. J. Ibok, and U. J. Ekpe, “Comparative investigation into the kinetics of corrosion inhibition of aluminium alloy AA 1060 in acidic medium,” Bulletin of Electrochemistry, vol. 17, no. 10, pp. 459–464, 2001.
[4]  T. A. Sethi, R. K. Chaturvedi, Upadyay, and S. P. Marthur, “Corrosion inhibitory effects of some Schiff's bases on mild steel in acid media,” Journal of the Chilean Chemical Society, vol. 52, no. 3, pp. 1206–1213, 2007.
[5]  K. P. Srivastva, A. Kumar, and R. Singh, “Bivalent transition metal complexes of tridentate Schiff base ligands: an ecofriendly study,” Journal of Chemical and Pharmaceutical Research, vol. 2, no. 6, pp. 68–77, 2010.
[6]  S. B. Ade, M. N. Deshpande, and D. G. Kolhatkar, “Corrosion a universal environmental problem: a role of Schiff base metal complexes as inhibitors,” Journal of Chemical and Pharmaceutical Research, vol. 4, no. 2, pp. 1033–1035, 2012.
[7]  A. Paul, K. J. Thomas, V. P. Raphael, and K. S. Shaju, “Electrochemical and Gravimetric corrosion Inhibition Investigations of A Heterocyclic Schiff Base Derived From 3-Formylindole,” IOSR Journal of Applied Chemistry (IOSRJAC), vol. 1, pp. 17–23, 2012.
[8]  E. E. Ebenso, H. Alemu, S. A. Umoren, and I. B. Obot, “Inhibition of mild steel corrosion in sulphuric acid using alizarin yellow GG dye and synergistic iodide additive,” International Journal of Electrochemical Science, vol. 3, pp. 1325–1339, 2008.
[9]  S. A. Umoren, U. M. Eduok, and E. E. Oguzie, “Corrosion inhibition of mild steel in 1 M H2SO2 by polyvinyl pyrrolidone and synergistic iodide additives,” Portugaliae Electrochimica Acta, vol. 26, no. 6, pp. 533–546, 2008.
[10]  F. Bentiss, M. Bouanis, B. Mernari, M. Traisnel, and M. Lagrenee, “Effect of iodide ions on corrosion inhibition of mild steel by 3,5-bis(4-methylthiophenyl)-4H-1,2,4-triazole in sulfuric acid solution,” Journal of Applied Electrochemistry, vol. 32, no. 6, pp. 671–678, 2002.
[11]  M. A. Quraishi and J. Rawat, “Influence of iodide ions on inhibitive performance of tetraphenyl-dithia-octaaza-cyclotetradeca-hexaene (PTAT) during pickling of mild steel in hot sulfuric acid,” Materials Chemistry and Physics, vol. 70, no. 1, pp. 95–99, 2001.
[12]  Z. A. Iofa, V. V. Batrakov, and Cho-Ngok-Ba, “Influence of anion adsorption on the action of inhibitors on the acid corrosion of iron and cobalt,” Electrochimica Acta, vol. 9, no. 12, pp. 1645–1653, 1964.
[13]  I. F. Fishtik, I. I. Vatman, and F. A. Spatar, “The mechanism of ion-pair formation in the inner part of the double layer,” Journal of Electroanalytical Chemistry, vol. 165, no. 1-2, pp. 1–8, 1984.
[14]  S. Deng, X. Li, and H. Fu, “Synergistic inhibition effect of 6-benzylaminopurine and iodide ion on the corrosion of cold rolled steel in H3PO4 solution,” Corrosion Science, vol. 53, pp. 3704–3711, 2011.
[15]  ASTM, “Standard recommended practice for the laboratory immersion corrosion testing of metals,” Tech. Rep. ASTM G-31-72, ASTM, Philadelphia, Pa, USA, 1990.
[16]  K. C. Emregul and O. Atakol, “Corrosion inhibition of iron in 1 M HCl solution with Schiff base compounds and derivatives,” Materials Chemistry and Physics, vol. 83, no. 2-3, pp. 373–379, 2004.
[17]  A. Raman and P. Labine, Reviews on Corrosion Inhibitor Science and Technology, NACE, Houston, Tex, USA, 1986.
[18]  H. Ashassi-Sorkhabi, B. Shaabani, and D. Seifzadeh, “Effect of some pyrimidinic Shciff bases on the corrosion of mild steel in hydrochloric acid solution,” Electrochimica Acta, vol. 50, no. 16-17, pp. 3446–3452, 2005.
[19]  M. Bouklah, B. Hammouti, M. Lagrenée, and F. Bentiss, “Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium,” Corrosion Science, vol. 48, no. 9, pp. 2831–2842, 2006.
[20]  E. Cano, J. L. Polo, A. L. A. Iglesia, and J. M. Bastidas, “A study on the adsorption of benzotriazole on copper in hydrochloric acid using the inflection point of the isotherm,” Adsorption, vol. 10, no. 3, pp. 219–225, 2004.
[21]  F. Bentiss, M. Lebrini, and M. Lagrenée, “Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/ hydrochloric acid system,” Corrosion Science, vol. 47, no. 12, pp. 2915–2931, 2005.
[22]  W. H. Li, Q. He, S. T. Zhang, C. L. Pei, and B. R. Hou, “Some new triazole derivatives as inhibitors for mild steel corrosion in acidic medium,” Journal of Applied Electrochemistry, vol. 38, no. 3, pp. 289–295, 2008.
[23]  K. Aramaki and M. Hackerman, “Inhibition mechanism of medium-sized polymethyleneimine,” Journal of The Electrochemical Society, vol. 116, no. 5, pp. 568–574, 1969.
[24]  N. Caliskan and S. Bilgic, “Effect of iodide ions on the synergistic inhibition of the corrosion of manganese-14 steel in acidic media,” Applied Surface Science, vol. 153, no. 2-3, pp. 128–133, 2000.
[25]  A. R. S. Priya, V. S. Muralidharam, and A. Subramannia, “Development of novel acidizing inhibitors for carbon steel corrosion in 15% boiling hydrochloric acid,” Corrosion, vol. 64, no. 6, pp. 541–552, 2008.
[26]  M. El Azhar, B. Mernari, M. Traisnel, F. Bentiss, and M. Lagrenée, “Corrosion inhibition of mild steel by the new class of inhibitors [2,5-bis(n-pyridyl)-1,3,4-thiadiazoles] in acidic media,” Corrosion Science, vol. 43, no. 12, pp. 2229–2238, 2001.
[27]  A. Yurt, A. Balaban, S. U. Kandemir, G. Bereket, and B. Erk, “Investigation on some Schiff bases as HCl corrosion inhibitors for carbon steel,” Materials Chemistry and Physics, vol. 85, no. 2-3, pp. 420–426, 2004.
[28]  J. R. Macdonald, W. B. Johnson, and J. R. Macdonald, Theory in Impedance Spectroscopy, John Wiley & Sons, New York, NY, USA, 1987.
[29]  A. K. Singh, S. K. Shukla, M. Singh, and M. A. Quraishi, “Inhibitive effect of ceftazidime on corrosion of mild steel in hydrochloric acid solution,” Materials Chemistry and Physics, vol. 129, no. 1-2, pp. 68–76, 2011.
[30]  M. MaCafferty and N. Hackerman, “Double layer capacitance of iron and corrosion inhibition with polymethylene diamines,” Journal of The Electrochemical Society, vol. 119, no. 2, pp. 146–154, 1972.
[31]  X. Li, S. Deng, and H. Fu, “Synergism between red tetrazolium and uracil on the corrosion of cold rolled steel in H2SO4 solution,” Corrosion Science, vol. 51, no. 6, pp. 1344–1355, 2009.
[32]  E. S. Ferreira, C. Giacomelli, F. C. Giacomelli, and A. Spinelli, “Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel,” Materials Chemistry and Physics, vol. 83, no. 1, pp. 129–134, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133