全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Predictive Modelling of Wellhead Corrosion due to Operating Conditions: A Field Data Approach

DOI: 10.5402/2012/237025

Full-Text   Cite this paper   Add to My Lib

Abstract:

The flow of crude oil, water, and gas from the reservoirs through the wellheads results in its deterioration. This deterioration which is due to the impact of turbulence, corrosion, and erosion significantly reduces the integrity of the wellheads. Effectively managing the wellheads, therefore, requires the knowledge of the extent to which these factors contribute to its degradation. In this paper, the contribution of some operating parameters (temperature, CO2 partial pressure, flow rate, and pH) on the corrosion rate of oil and gas wellheads was studied. Field data from onshore oil and gas fields were analysed with multiple linear regression model to determine the dependency of the corrosion rate on the operating parameters. ANOVA, value test, and multiple regression coefficients were used in the statistical analysis of the results, while in previous experimental results, de Waard-Milliams models and de Waard-Lotz model were used to validate the modelled wellhead corrosion rates. The study shows that the operating parameters contribute to about 26% of the wellhead corrosion rate. The predicted corrosion models also showed a good agreement with the field data and the de Waard-Lotz models but mixed results with the experimental results and the de Waard-Milliams models. 1. Introduction Corrosion of materials is a major challenge to maintaining the integrity of equipment in the industry. Mobile and static mechanical equipment like pipelines, vessels, tanks, compressors, turbines, and so forth have been periodically subjected to degradation and failure due to corrosion. According to reports [1], the cost of corrosion in the US will hit 6.2% of GDP in 2012, making it the most expensive single venture in the economy. The impact of corrosion in the oil and gas industry significantly contributes to the nonproductive time (NPT) of 20–30% lost from exploration to production [2]. Corrosion of pipeline accounts for about 35% of failures associated with pipeline leakage and bursting in Canada [3], while 50% of the loss of containment hazard in Europe between 1980 and 2006 was a result of the ageing plant mechanism [4] triggered by corrosion-related fatigue cracking and erosion. Corrosion also ranks second to the highest most frequent initiating factor leading to loss of containment in UK [4, 5]. While external corrosion, stress corrosion cracking, and microbiologically influenced corrosion have significantly resulted in pipeline failures, failure attributable to sour and sweet corrosion which results from activities of CO2 and H2S has contributed to over 50% of all

References

[1]  “Cost of Corrosion to Exceed $1 Trillion in the United States in 2012 | G2MT Labs—The Future of Materials Condition Assessment,” http://www.g2mtlabs.com/2011/06/nace-cost-of-corrosion-study-update/.
[2]  R. Nicholson, J. Feblowitz, C. Madden, and R. Bigliani, “The Role of Predictive Analytics in Asset Optimization for the Oil and Gas Industry-White Paper,” 2010, http://www.tessella.com/wp-content/uploads/2008/02/IDCWP31SA4Web.pdf.
[3]  CAPP, “Best Management Practices: Mitigation of Internal Corrosion in Oil Effluent Pipeline Systems,” 2009, http://www.capp.ca/getdoc.aspx?DocId=155641&DT=PDF.
[4]  Control of Major Accident Hazards, “Ageing Plant Operational Delivery Guide,” http://www.hse.gov.uk/comah/guidance/ageing-plant-core.pdf.
[5]  P. Horrocks, D. Mansfield, K. Parker, J. Thomson , T. Atkinson, and J. Worsley, “Managing Ageing Plant,” http://www.hse.gov.uk/research/rrpdf/rr823-summary-guide.pdf.
[6]  J. Kruger, “Electrochemistry of Corrosion,” 2001, http://electrochem.cwru.edu/encycl/art-c02-corrosion.htm.
[7]  “Review of corrosion management for offshore oil and gas processing,” HSE Offshore Technology Report 2001/044, 2001.
[8]  P.O. Gartland and R. Johnsen, “Application of internal corrosion modelling in risk assessment of pipeline,” NACE International Conference Sereis, Corrosion 2003 paper no 03179, 2003.
[9]  C. De-Waard and V. Lotz, “Prediction of CO2 corrosion of carbon steel,” NACE International Conference Sereis, Corrosion /93. Paper no. 69, NACE int., Houston, Tex, USA, 1993.
[10]  A. Dugstad, L. Lunde, and K. Videm, “Parametric study of CO2 corrosion of carbon steeel,” NACE International Conference Sereis, Corrosion/94. Paper no 14, NACE, Houston, Tex, USA, 1994.
[11]  M. Nordsveen, S. Ne?i?, R. Nyborg, and A. Stangeland, “A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films—part 1: theory and verification,” Corrosion, vol. 59, no. 5, pp. 443–456, 2003.
[12]  C. de Waard, U. Lotz, and A. Dugstad, “Influence of liquid flow velocity on CO2 corrosion a semi-empirical model,” NACE International Conference Sereis, Corrosion/95, paper no. 128, Houston, Tex, USA, 1995.
[13]  C. De Waard and D. E. Milliams, “Cabonic acid corrosion of steel,” Corrosion, vol. 31, no. 5, pp. 177–181, 1975.
[14]  R. Nyborg, “Controlling internal corrosion in oil and gas pipeline,” Business Briefing-Exploration & Production, vol. 2005, no. 2, pp. 70–74, 2005.
[15]  W. Sun and S. Nesic, “A mechanistic model of H2S corrosion of mild steel,” NACE International Conference Sereis, CORROSION 2007 paper 07655, 2007.
[16]  K.-L. Lee and S. Nesic, “EIS investigation on the electrochemistry of CO2/H2S corrosion,” NACE International Conference Sereis, CORROSION 2004 paper 04728, 2004.
[17]  M. E. Mohyaldinn, N. Elkhatib, and M. C. Ismail, “A computational tool for erosion/corrosion prediction in oil/gas production facilities,” in Proceedings of the ICSSST2010 3rd International Conference on Solid State Science &Technology, Kuching, Sarawak, Malaysia, 2010.
[18]  S. Nesic and J. Postlethwaite, “Relationship between the structure of disturbed flow and erosion-corrosion,” Corrosion, vol. 46, no. 11, pp. 874–880, 1990.
[19]  S. Hassani, K. P. Roberts, S. A. Shirazi, J. R. Shadley, E. F. Rybicki, and C. Joia, “Flow loop study of chloride concentration effect on erosion, corrosion and erosion-corrosion of carbon steel in CO2 saturated systems,” Corrosion, vol. 68, no. 2, 2012.
[20]  A. Dugstad, E. Gulbrandesen, J. Kvarekv?l, R. Nyborg, and M. Seiersten, “Corrosion testing in multiphase flow, challenges and limitations,” NACE International Conference Sereis, Corrosion/2006 paper no 06598, 2006.
[21]  R. Zhang, M. Gopal, and W. P. Jepson, “Development of a Mechanistic model for predicting Corrosion rate in Multiphase oil/water/gas flows,” NACE International Conference Sereis, Corrosion /97, paper 601, 1997.
[22]  W. P. Jepson, S. Bhongale, and M. Gopal, “Predictive model for sweet corrosion in horizontal multiphase slug flow,” NACE International Conference Sereis, Corrosion/96: paper 19, 1996.
[23]  B. Khajotia, D. Sormaz, and S. Nesic, “Case-based reasoning model of CO2 corrosion based on field data,” NACE International Conference Sereis, CORROSION 2007 paper 07553, 2007.
[24]  Y. Xian and S. Nesic, “A stochastic prediction model of localized CO2 corrosion,” NACE International Conference Sereis, CORROSION 2005 paper No 05057, 2005.
[25]  N. Srdjan, J. Cai, and K. L. John Lee, “A multiphase flow and internal corrosion prediction model for mild steel pipeline,” NACE International Conference Sereis, CORROSION 2005 PAPER 05556, 2005.
[26]  R. Case, “Assessment of CO2 corrosion damage distribution in Oil wells by deterministic and Stochastic Modelling,” NACE International Conference Sereis, Corrosion/2008. Paper 08514, 2008.
[27]  H. Fang, B. Brown, and S. Nescaronicacute, “Effects of sodium chloride concentration on mild steel corrosion in slightly sour environments,” Corrosion, vol. 67, no. 1, 2011.
[28]  M. Singer, B. Brown, A. Camacho, and S. Ne?i?, “Combined effect of carbon dioxide, hydrogen sulfide, and acetic acid on bottom-of-the-line corrosion,” Corrosion, vol. 67, no. 1, 2011.
[29]  Y. Song, A. Palencsár, G. Svenningsen, J. Kvarekv?l, and T. Hemmingsen, “Effect of O2 and temperature on sour corrosion,” Corrosion, vol. 68, no. 7, pp. 662–671, 2012.
[30]  V. Fajardo, C. Canto, B. Brown, and S. Nesic, “Effect of organic acids in CO2 corrosion,” NACE Internatinal Conference & Expo. CORROSION 2007 paper 07319, 2007.
[31]  C. Mendex, M. Singer, A. Camacho, S. Hernndez, and S. Nesic, “Effect of acetic acid pH and MEG on CO2 top of the line corrosion,” NACE International Conference Sereis, Corrosion 2005, paper 05278, 2005.
[32]  H. Wang, W. Paul Jepson, J. Y. Cai, and M. Gopal, “Effect of bubbles on mass transfer in multiphase flow,” NACE International Conference Sereis, CORROSION 2000 paper 00050, 2005.
[33]  X. Hu, A. Neville, J. Wells, and V. De Souza, “Prediction of erosion-corrosion in oil and gas—a systematic approach,” NACE International Conference Sereis, CORROSION 2008 paper 08540, 2008.
[34]  A. A. Sami and A. A. Mohammed, “Study synergy effect on erosion-corrosion in oil and gas pipelines,” Engineering & Technology, vol. 26, no. 9, 2008.
[35]  J. Wen, T. Gu, and S. Nesic, “Investigation of the effects of fluid flow on srb biofilm,” NACE International Corrosion Conference Series, Corrosion/2007 Paper no 07516, 2007.
[36]  A. Keating and S. Nesic, “Prediction of two-phase erosion-corrosion in bends,” in Proceedings of the 2nd International Conference on CFD in Minerals and Processes Industries CSIRO, Melbourne, Australia, 1999.
[37]  S. Hassani, K. P. Roberts, S. A. Shirazi, J. R. Shadley, E. F. Rybicki, and C. Joia, “Flow loop study of chloride concentration effect on erosion, corrosion and erosion-corrosion of carbon steel in CO2 saturated systems,” Corrosion, vol. 68, no. 2, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133