The inhibition efficiency (IE) of an aqueous extract of henna leaves in controlling corrosion of carbon steel in seawater has been evaluated by weight-loss method. The weight loss study reveals that the formulation consisting of 8?mL of henna extract (HE) and 25?ppm of Zn2+ has 94% inhibition efficiency in controlling corrosion of carbon steel in sea water. Polarization study reveals that HE and Zn2+ system functions as mixed type inhibitor. AC impedance spectra reveal that protective film is formed on the metal surface. The nature of the metal surface has been analysed by FTIR spectra, SEM, and AFM analysis. 1. Introduction Sea water is one of the most corroded and most abundant naturally occurring electrolytes. The corrosive behaviour of seawater is reflected by the fact that most of the common structural metals and alloys are attacked by this liquid or its surrounding environments. The sea water environments can be divided into five zones, namely, subsoil, continuously submerged, tidal, splash zone above high tidal, and atmospheric zone [1]. The corrosion behaviour of metals and alloys differs from one zone to another. In splash zone the stainless steels have usually satisfactory performance while the carbon and low alloy steels do not. Anderson and Ross had found that the austenitic grades performed much better than martensitic and ferritic grades [2]. The Ni, Cu, and P alloyed steels were found to be much more resistant than carbon steel in splash zone [3]. Also, it was found that Mn, P, and Al had measurable influence on corrosion rates of low carbon steels under tidal exposure. After 5-year exposure test, it was found that the rate of attack in splash zone was much higher than the atmospheric and deep submerged zones [4]. Metals and alloys are often exposed to the action of acids and alkalis in industrial processes thereby prompting their deterioration [5]. One of the most effective means of protecting metals and alloys surfaces from corrosion in acid and alkaline environments is the use of corrosion inhibitors [6]. Corrosion inhibitors are usually added to the acid/alkaline solution to reduce the metal loss. Recently, studies on the use of drugs have been reported by several researchers [7, 8]. Some of these corrosion inhibitors are, however, toxic to the environment. This has prompted the search for green corrosion inhibitors that are nontoxic and ecofriendly for metals and alloys in acidic and alkaline solutions [9]. These green corrosion inhibitors have been found to have centre for -electrons and functional groups (such as –C=C–, –OR, –OH,
References
[1]
F. L. LaQue, Marine Corrosion and Prevention, John Wiley & Sons, New York, NY, USA, 1975.
[2]
D. B. Anderson and R. W. Ross Jr., “Proection of steel pilling in marine splash and spray zone-Metallic sheathing concept,” pp. 461–473, Proceeding of the 4th International Congress on Marine Corrosion and Fouling, Juan-les-Pins, France, 1976.
[3]
C. P. Larrabee, “Corrosion resistance of high strength low alloy steel as influenced by composition and environment,” Corrosion, vol. 9, pp. 259–371, 1953.
[4]
A. A. Humbles, “The cathodic protection of steel in seawater,” Corrosion, September 1949.
[5]
O. K. Abola and A. O. James, “The effects of Aloe vera extract on corrosion and kinetics of corrosion process of zinc in HCl solution,” Corrosion Science, vol. 52, no. 2, pp. 661–664, 2010.
[6]
E. E. Ebenso, T. Arslan, F. Kandemirli, N. Caner, and I. Love, “Quantum chemical studies of some rhodanine azosulpha drugs as corrosion inhibitors for mild steel in acidic medium,” International Journal of Quantum Chemistry, vol. 110, no. 5, pp. 1003–1018, 2010.
[7]
N. O. Eddy, U. J. Ibok, E. E. Ebenso, A. Nemr, and E. S. H. El Ashry, “Quantum chemical study of the inhibition of the corrosion of mild steel in H2SO4 by some antibiotics,” Journal of Molecular Modeling, vol. 15, no. 9, pp. 1085–1092, 2009.
[8]
A. I. Onen, B. T. Nwufo, E. E. Ebenso, and R. M. Hlophe, “Titanium (IV) oxide as corrosion inhibitor for aluminium and mild steel in acidic medium,” International Journal of Electrochemical Science, vol. 5, pp. 1563–1573, 2010.
[9]
E. E. Oguzie, “Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract,” Corrosion Science, vol. 49, no. 3, pp. 1527–1539, 2007.
[10]
A. Sharmila, A. A. Prema, and P. A. Sahayaraj, “Influence of Murraya koenigii (curry leaves) extract on the corrosion inhibition of carbon steel in HCL solution,” Rasayan Journal of Chemistry, vol. 3, no. 1, pp. 74–81, 2010.
[11]
A. Y. El-Etre, “Inhibition of aluminum corrosion using Opuntia extract,” Corrosion Science, vol. 45, no. 11, pp. 2485–2495, 2003.
[12]
E. E. Ebenso, U. J. Ibok, U. J. Ekpe et al., “Corrosion inhibition studies of some plant extracts on aluminium in acidic medium,” Transactions of the SAEST, vol. 39, no. 4, pp. 117–123, 2004.
[13]
A. D. Odiongenyi, S. A. Odoemelam, and N. O. Eddy, “Corrosion inhibition and adsorption properties of ethanol extract of Vernonia amygdalina for the corrosion of mild steel in H2SO4,” Portugaliae Electrochimica Acta, vol. 27, no. 1, pp. 33–45, 2009.
[14]
E. E. Oguzie, “Inhibition of acid corrosion of mild steel by Telfaria occidentalis extract,” Pigment and Resin Technology, vol. 34, no. 6, pp. 321–326, 2005.
[15]
P. C. Okafor, M. E. Ikpi, I. E. Uwah, E. E. Ebenso, U. J. Ekpe, and S. A. Umoren, “Inhibitory action of Phyllanthus amarus extracts on the corrosion of mild steel in acidic media,” Corrosion Science, vol. 50, no. 8, pp. 2310–2317, 2008.
[16]
E. A. Noor, “Temperature effects on the corrosion inhibition of mild steel in acidic solutions by aqueous extract of fenugreek leaves,” International Journal of Electrochemical Science, vol. 2, pp. 996–1017, 2007.
[17]
A. Y. El-Etre, “Inhibition of acid corrosion of carbon steel using aqueous extract of olive leaves,” Journal of Colloid and Interface Science, vol. 314, no. 2, pp. 578–583, 2007.
[18]
U. Anozie, C. S. Akoma, and L. A. Nnanna, “Corrosion inhibition of aluminium alloy in acidic medium by Euphorbia hirta and Dialum guineense extracts,” International Journal of Pure and Applied Sciences and Technology, vol. 6, no. 2, pp. 79–88, 2011.
[19]
I. B. Obot and N. O. Obi-Egbedi, “Ginseng root: a new efficient and effective eco-friendly corrosion inhibitor for aluminium alloy of type AA 1060 in hydrochloric acid solution,” International Journal of Electrochemical Science, vol. 4, no. 9, pp. 1277–1288, 2009.
[20]
S. J. Arockia, S. Rajendran, S. V. Ganga, A. J. Amalraj, and B. Naranyansamy, “Corrosion inhibition by beet root extract,” Portugaliae Electrochemica Acta, vol. 27, no. 1, pp. 1–11, 2009.
[21]
P. B. Raja, A. A. Rahim, H. Osman, and K. Awang, “Inhibitory effect of Kopsia singapurensis extract on the corrosion behavior of mild steel in acid media,” Acta Physico-Chimica Sinica, vol. 26, no. 8, pp. 2171–2176, 2010.
[22]
K. S. Beenakumari, “Inhibitory effects of Murraya koenigii (Curry leaf) leaf extracts on the corrosion of mild steel in 1?M Hcl,” Green Chemistry Letters and Reviews, vol. 4, no. 2, pp. 117–120, 2011.
[23]
T. Umamathi, J. A. Selvi, S. A. Kanimozhi, S. Rajendran, and A. J. Amalraj, “Effect of Na3PO4 on the corrosion inhibition efficiency of EDTA—Zn2+ system for carbon steel in aqueous solution,” Indian Journal of Chemical Technology, vol. 15, no. 6, pp. 560–565, 2008.
[24]
S. Rajendran, S. Shanmugapriya, T. Rajalakshmi, and A. J. A. Raj, “Corrosion inhibition by an aqueous extract of rhizome powder,” Corrosion, vol. 61, no. 7, pp. 685–692, 2005.
[25]
K. Anuradha, R. Vimala, B. Narayanaswamy, J. A. Selvi, and S. Raji, “Corrosion inhibition of carbon steel in low chloride media by an aqueous extract of Hibiscus rosa-sinensis linn,” Chemical Engineering Communications, vol. 195, no. 3, pp. 352–366, 2008.
[26]
S. Rajendran, A. Raji, J. A. Selvi, A. Rosaly, and S. Thangasamy, “Evaluation of gender bias in use of modular instruction and concepts of organic chemistry Nomenclature,” Journals of Material Education, vol. 29, pp. 245–258, 2007.
[27]
S. Rajendran, A. Raji, J. A. Selvi, A. Rosaly, and S. Thangasamy, “Parents' education and achievement scores in chemistry,” Edutracks, vol. 6, pp. 30–33, 2007.
[28]
F. R. Selvarani, S. Santhamadharasi, J. W. Sahayaraj, A. J. Amalraj, and S. Rajendran, “Synergistic effect of succinic acid and Zn2+ in controlling corrosion of carbon steel,” Bulletin of Electrochemistry, vol. 20, no. 12, pp. 561–566, 2004.
[29]
J. Sathiabama, S. Rajendran, and J. A. Selvi, “Erilchrome Black-T as corrosion inhibition for carbon steel in well water,” Bulletin of Electrochemistry, vol. 22, pp. 363–370, 2006.
[30]
S. Rajendran, M. Manivannan, J. W. Sahayaraj et al., “Corrosion behavior of aluminium in methyl orange solution at pH 11,” Transactions of the SAEST, vol. 41, no. 2, pp. 63–67, 2006.
[31]
R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric, Identification of Organic Compounds, John Wiley & Sons, New York, NY, USA, 1986.
[32]
I. Sekine and Y. Hirakawa, “Effect of 1-hydroxyethylidene-1, 1-diphosphonic acid on the corrosion of SS 41 steel in 0. 3% sodium chloride solution,” Corrosion, vol. 42, no. 5, pp. 272–277, 1986.
[33]
S. Rajendran, S. P. Sridevi, N. Anthony, A. J. Amalraj, and M. Sundaravadivelu, “Corrosion behaviour of carbon steel in polyvinyl alcohol,” Anti-Corrosion Methods and Materials, vol. 52, no. 2, pp. 102–107, 2005.
[34]
S. Rajendran, M. Agasta, R. Bama Devi, B. Shyamala Devi, K. Rajam, and J. Jayasundari, “Corrosion inhibition of aqueous extract of Henna leaves,” Zastita Materijala, vol. 50, no. 2, pp. 77–84, 2009.
[35]
R. M. Silverstein and F. X. Webster, Spectrometric Identification of Organic Compounds, John Wiley & Sons, New York, NY, USA, 6th edition, 2007.
[36]
B. Sherine, A. J. Abdul Nasser, and S. Rajendran, “Inhibitive action of hydroquinone—Zn2+ system in controlling the corrosion of carbon steel in well water,” International Journal of Engineering Science and Technology, vol. 2, no. 4, pp. 341–357, 2010.
[37]
A. K. Singh and M. A. Quraishi, “Investigation of the effect of disulfiram on corrosion of mild steel in hydrochloric acid solution,” Corrosion Science, vol. 53, no. 4, pp. 1288–1297, 2011.
[38]
B. Wang, M. Du, J. Zhang, and C. J. Gao, “Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against CO2 corrosion,” Corrosion Science, vol. 53, no. 1, pp. 353–361, 2011.