全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Hexagonal Manganites—(RMnO3): Class (I) Multiferroics with Strong Coupling of Magnetism and Ferroelectricity

DOI: 10.1155/2013/497073

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hexagonal manganites belong to an exciting class of materials exhibiting strong interactions between a highly frustrated magnetic system, the ferroelectric polarization, and the lattice. The existence and mutual interaction of different magnetic ions (Mn and rare earth) results in complex magnetic phase diagrams and novel physical phenomena. A summary and discussion of the various properties, underlying physical mechanisms, the role of the rare earth ions, and the complex interactions in multiferroic hexagonal manganites, are presented in this paper. 1. Introduction and Brief History Since the discovery of the intimate relations between electric and magnetic phenomena by Oersted, Ampère, Faraday, and others, which ultimately led James Clerk Maxwell to formulate the unified theory of electromagnetism, the mutual interaction between magnetic (electric) properties and electric (magnetic) fields has been in the focus of interest for more than a century. Wilhelm Conrad R?ntgen discovered in 1888 that a dielectric became magnetized when moving in a uniform electric field [1]. His study was motivated by the following reasoning: when a dielectric sheet, polarized in the external electric field, is moved in the direction perpendicular to the field lines, the motion of negative and positive charges, separated through the induced polarization, becomes equivalent to two electrical currents moving into opposite directions on either side of the sheet. Those currents generate a magnetic field, that is, the dielectric becomes magnetized. The experimental setup to prove the magnetoelectric effect did involve a fast rotating dielectric disc between two horizontal capacitor plates. In the same communication, R?ntgen also conjectured that the inverse effect should exist, namely the change of the polarization of a moving dielectric induced by an external magnetic field, which was indeed experimentally shown by Wilson in 1905 [2]. The possibility of a magnetoelectric effect in (non-moving) materials was later discussed by P. Curie from a symmetry point of view [3]. It took, however, many more years to understand the importance of the violation of time reversal symmetry (either by moving the dielectric, by external magnetic fields, or by magnetic orders) for the magnetoelectric coupling to become effective. The realization of the magnetoelectric effect in the antiferromagnetic phase of Cr2O3, predicted by Dzyaloshinskii [4] on symmetry grounds, was experimentally verified through the demonstration that an electric field did induce a magnetization [5–7] as well as the reverse

References

[1]  W. C. R?ntgen, “Ueber die durch Bewegung eines im homogenen electrischen Felde befindlichen Dielectricums hervorgerufene electrodynamische Kraft,” Annalen Der Physik, vol. 271, pp. 264–270, 1888.
[2]  H. A. Wilson, “On the electric effect of rotating a dielectric in a magnetic field,” Philosophical Transactions of the Royal Society A, vol. 204, pp. 121–137, 1905.
[3]  P. Curie, “Sur la symétrie dans les phénomènes physiques. Symétrie d’un champ électrique d’un champ magnétique,” Journal de Physique, vol. 3, pp. 393–416, 1894.
[4]  I. E. Dzyaloshinskii, “On the magneto-electrical effect in antiferromagnets,” Soviet Physics, vol. 10, pp. 628–629, 1960, Zhurnal Eksperimental'Noi I Teoreticheskoi Fiziki, vol. 37, no. 3, pp. 881–882, 1959.
[5]  D. N. Astrov, “The magnetoelectric effect in antiferromagnetics,” Soviet Physics, vol. 11, pp. 708–709, 1960, Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, vol. 38, pp. 984–985, 1960.
[6]  V. J. Folen, G. T. Rado, and E. W. Stalder, “Anisotropy of the magnetoelectric effect in Cr2O3,” Physical Review Letters, vol. 6, no. 11, pp. 607–608, 1961.
[7]  D. N. Astrov, “Magnetoelectric effect in chromium oxide,” Soviet Physics, vol. 13, pp. 729–733, 1961, Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki, vol. 40, pp. 1035, 1961.
[8]  G. T. Rado and V. J. Folen, “Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains,” Physical Review Letters, vol. 7, no. 8, pp. 310–311, 1961.
[9]  G. T. Rado, “Mechanism of the magnetoelectric effect in an antiferromagnet,” Physical Review Letters, vol. 6, pp. 609–610, 1961.
[10]  R. M. Hornreich, “Magnetoelectric effect: materials, physical aspects, and applications,” IEEE Transactions on Magnetics, vol. 8, no. 3, pp. 584–589, 1972.
[11]  H. Schmid, “Magnetoelectric effects in insulating magnetic materials,” in Introduction to Complex Mediums for Optics and Electromagnetics, W. S. Weiglhofer and A. Lakhtakia, Eds., vol. 123, p. 167, SPIE Press Monograph, Bellingham, Wash, USA, 2003.
[12]  T. H. O'Dell, “The field invariants in a magneto-electric medium,” Philosophical Magazine, vol. 8, pp. 411–418, 1963.
[13]  W. F. Brown, R. M. Hornreich, and S. Shtrikman, “Upper bound on the magnetoelectric susceptibility,” Physical Review, vol. 168, no. 2, pp. 574–577, 1968.
[14]  E. Ascher and A. G. M. Janner, “Upper bounds on the magneto-electric susceptibility,” Physics Letters A, vol. 29, no. 6, p. 295, 1969.
[15]  G. T. Rado, J. M. Ferrari, and W. G. Maisch, “Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed TbPO4,” Physical Review B, vol. 29, no. 7, pp. 4041–4048, 1984.
[16]  J. P. Rivera, “A short review of the magnetoelectric effect and relatedexperimental techniques on single phase (multi-) ferroics,” European Physical Journal B, vol. 71, pp. 299–313, 2009.
[17]  H. G. Kahle, S. Bluck, and A. Kasten, “Simultaneous measurement of magnetic and magneto-electric susceptibility in TbPO4,” Journal of Magnetism and Magnetic Materials, vol. 54-57, no. 3, pp. 1327–1328, 1986.
[18]  H. Schmid, “Some symmetry aspects of ferroics and single phase multiferroics,” Journal of Physics, vol. 20, Article ID 434201, 2008.
[19]  E. Ascher, “Higher-order magneto-electric effects,” Philosophical Magazine, vol. 17, no. 145, pp. 149–157, 1968.
[20]  J.-P. Rivera, “On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr–Cl boracite,” Ferroelectrics, vol. 161, no. 1, pp. 165–180, 1994.
[21]  S. L. Hou and N. Bloembergen, “Paramagnetoelectric effects in NiSO4 6H2O,” Physical Review, vol. 138, no. 4 A, pp. A1218–A1226, 1965.
[22]  T. H. O'Dell, “An induced magneto-electric effect in yttrium iron garnet,” Philosophical Magazine, vol. 16, no. 141, pp. 487–494, 1967.
[23]  J.-P. Rivera and H. Schmid, “Linear and quadratic magnetoelectric (ME) effect in Ni-Cl boracite,” Journal of Applied Physics, vol. 70, no. 10, pp. 6410–6412, 1991.
[24]  K.-C. Liang, W. Zhang, B. Lorenz, Y. Y. Sun, P. S. Halasyamani, and C. W. Chu, “Weak ferromagnetism and internal magnetoelectric effect in LiFeP2O7,” Physical Review B, vol. 86, Article ID 094414, 2012.
[25]  A. M. Kadomtseva, Y. F. Popov, G. P. Vorob'ev et al., “Magnetoelectric and magnetoelastic properties of rare-earth ferroborates,” Low Temperature Physics, vol. 36, no. 6, Article ID 004006LTP, pp. 511–521, 2010.
[26]  Y. F. Popov, A. P. Pyatakov, A. M. Kadomtseva et al., “Peculiarities in the magnetic, magnetoelectric, and magnetoelastic properties of SmFe3(BO3)4 multiferroic,” Journal of Experimental and Theoretical Physics, vol. 111, no. 2, pp. 199–203, 2010.
[27]  A. K. Zvezdin, G. P. Vorob'ev, A. M. Kadomtseva et al., “Magnetoelectric and magnetoelastic interactions in NdFe3(BO3)4 multiferroics,” JETP Letters, vol. 83, no. 11, pp. 509–514, 2006.
[28]  K. C. Liang, R. P. Chaudhury, B. Lorenz et al., “Giant magnetoelectric effect in HoAl3(BO3)4,” Physical Review B, vol. 83, no. 18, Article ID 180417, 2011.
[29]  R. P. Chaudhury, B. Lorenz, Y. Y. Sun, L. N. Bezmaternykh, V. L. Temerov, and C. W. Chu, “Magnetoelectricity and magnetostriction due to the rare-earth moment in TmAl3(BO3)4,” Physical Review B, vol. 81, Article ID 220402, 4 pages, 2010.
[30]  N. A. Hill, “Why are there so few magnetic ferroelectrics?” Journal of Physical Chemistry B, vol. 104, pp. 6694–6709, 2000.
[31]  E. Ascher, H. Rieder, H. Schmid, and H. St?ssel, “Some properties of ferromagnetoelectric Nickel-Iodine boracite, Ni3B7O13I,” Journal of Applied Physics, vol. 37, p. 1404, 1966.
[32]  G. A. Smolenskii, V. A. Isupov, N. N. Krainik, and A. L. Agranovskaya, “Concerning the coexistence of the ferroelectric and ferrimagnetic states,” Izvestiya Rossijskoj Akademii Nauk. Seriya Fizika Atmosfery i Okeana, vol. 25, p. 1333, 1961.
[33]  V. A. Bokov, I. E. Myl'nikova, and G. A. Smolenskii, “Ferroelectrics and an- tiferromagnetics,” Zhurnal Eksperimental'Noi I Teoreticheskoi Fiziki, vol. 42, p. 643, 1962.
[34]  G. A. Smolenskii and I. E. Chupis, “Ferroelectromagnets,” Soviet Physics Uspekhi, vol. 25, p. 475, 1982.
[35]  H. Schmid, “Multi-ferroic magnetoelectrics,” Ferroelectrics, vol. 162, p. 317, 1994.
[36]  M. Fiebig, “Revival of the magnetoelectric effect,” Journal of Physics D, vol. 38, no. 8, article R123, 2005.
[37]  T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, “Magnetic control of ferroelectric polarization,” Nature, vol. 426, no. 6962, pp. 55–58, 2003.
[38]  F. Bertaut, F. Forrat, and P. Fang, “Les manganites de terres Fares et d'yurtum: une nouvelle classe de ferrotleciriques,” Comptes Rendus de l'Académie des Sciences, vol. 256, p. 1958, 1963.
[39]  H. L. Yakel, W. C. Koehler, E. F. Bertaut, and E. F. Forrat, “On the crystal structure of the manganese(III) trioxides of the heavy lanthanides and yttrium,” Acta Crystallographica, vol. 16, pp. 957–962, 1963.
[40]  M. Fiebig, T. Lottermoser, M. K. Kneip, and M. Bayer, “Correlations between magnetic and electrical orderings in multiferroic manganites,” Journal of Applied Physics, vol. 99, no. 8, Article ID 08E302, 2006.
[41]  F. Yen, C. de la Cruz, B. Lorenz et al., “Magnetic phase diagrams of multiferroic hexagonal RMnO3 (R = Er, Yb, Tm, and Ho),” Journal of Materials Research, vol. 22, no. 8, pp. 2163–2173, 2007.
[42]  G. A. Smolenskii and V. A. Bokov, “Coexistence of magnetic and electric ordering in crystals,” Journal of Applied Physics, vol. 35, no. 3, pp. 915–918, 1964.
[43]  Z. J. Huang, Y. Cao, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, “Coupling between the ferroelectric and antiferromagnetic orders in YMnO3,” Physical Review B, vol. 56, no. 5, pp. 2623–2626, 1997.
[44]  G. Lawes, A. B. Harris, T. Kimura et al., “Magnetically driven ferroelectric order in Ni3V2O8,” Physical Review Letters, vol. 95, no. 8, Article ID 087205, pp. 1–4, 2005.
[45]  A. H. Arkenbout, T. T. M. Palstra, T. Siegrist, and T. Kimura, “Ferroelectricity in the cycloidal spiral magnetic phase of MnWO4,” Physical Review B, vol. 74, Article ID 184431, 7 pages, 2006.
[46]  K. Taniguchi, N. Abe, T. Takenobu, Y. Iwasa, and T. Arima, “Ferroelectric polarization flop in a frustrated magnet MnWO4 induced by a magnetic field,” Physical Review Letters, vol. 97, Article ID 097203, 4 pages, 2006.
[47]  O. Heyer, N. Hollmann, I. Klassen et al., “A new multiferroic material: MnWO4,” Journal of Physics, vol. 18, no. 39, article no. L01, pp. L471–L475, 2006.
[48]  S. Park, Y. J. Vhoi, C. L. Zhang, and S.-W. Cheong, “Ferroelectricity in an S = 1/2 Chain Cuprate,” Physical Review Letters, vol. 98, no. 5, Article ID 057601, 2007.
[49]  T. Kimura, J. C. Lashley, and A. P. Ramirez, “Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2,” Physical Review B, vol. 73, Article ID 220401, 4 pages, 2006.
[50]  Y. Yamasaki, S. Miyasaka, Y. Kaneko, J.-P. He, T. Arima, and Y. Tokura, “Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide,” Physical Review Letters, vol. 96, no. 20, Article ID 207204, 2006.
[51]  S. W. Cheong and M. Mostovoy, “Multiferroics: a magnetic twist for ferroelectricity,” Nature Materials, vol. 6, no. 1, pp. 13–20, 2007.
[52]  Y. J. Choi, H. T. Yi, S. Lee, Q. Huang, V. Kiryukhin, and S. W. Cheong, “Ferroelectricity in an ising chain magnet,” Physical Review Letters, vol. 100, Article ID 047601, 4 pages, 2008.
[53]  A. Inomata and K. Kohn, “Pyroelectric effect and possible ferroelectric transition of helimagnetic GdMn2O5, TbMn2O5 and YMn2O5,” Journal of Physics, vol. 8, no. 15, p. 2673, 1996.
[54]  N. Hur, S. Park, P. A. Sharma, S. Guha, and S. W. Cheong, “Colossal magnetodielectric effects in DyMn2O5,” Physical Review Letters, vol. 93, no. 10, pp. 1–107207, 2004.
[55]  B. Lorenz, Y. Q. Wang, and C. W. Chu, “Ferroelectricity in perovskite HoMnO3 and YMnO3,” Physical Review B, vol. 76, Article ID 104405, 5 pages, 2007.
[56]  Y. S. Chai, Y. S. Oh, L. J. Wang et al., “Intrinsic ferroelectric polarization of orthorhombic manganites with E-type spin order,” Physical Review B, vol. 85, Article ID 184406, 6 pages, 2012.
[57]  D. Higashiyama, S. Miyasaka, N. Kida, T. Arima, and Y. Tokura, “Control of the ferroelectric properties of DyMn2O5 by magnetic fields,” Physical Review B, vol. 70, no. 17, Article ID 174405, pp. 1–7, 2004.
[58]  N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields,” Nature, vol. 429, no. 6990, pp. 392–395, 2004.
[59]  S. Seki, Y. Yamasaki, M. Soda, M. Matsuura, K. Hirota, and Y. Tokura, “Correlation between spin helicity and an electric polarization vector in quantum-spin chain magnet LiCu2O2,” Physical Review Letters, vol. 100, Article ID 127201, 4 pages, 2008.
[60]  H. Sagayama, K. Taniguchi, N. Abe et al., “Correlation between ferroelectric polarization and sense of helical spin order in multiferroic MnWO4,” Physical Review B, vol. 77, no. 22, Article ID 220407, 2008.
[61]  C. R. Dela Cruz, B. Lorenz, Y. Y. Sun et al., “Pressure-induced enhancement of ferroelectricity in multiferroic RMn2O5 (R=Tb,Dy,Ho),” Physical Review B, vol. 76, no. 17, Article ID 174106, 2007.
[62]  R. P. Chaudhury, C. R. Dela Cruz, B. Lorenz et al., “Pressure-induced polarization reversal in multiferroic YMn2O5,” Physical Review B, vol. 77, no. 22, Article ID 220104, 2008.
[63]  C. R. dela Cruz, B. Lorenz, and C. W. Chu, “Tuning ferroelectricity in DyMn2O5 by pressure and magnetic fields,” Physica B, vol. 403, no. 5-9, pp. 1331–1335, 2008.
[64]  R. P. Chaudhury, F. Yen, C. R. dela Cruz et al., “Pressure-temperature phase diagram of multiferroic Ni3V2O8,” Physical Review B, vol. 75, Article ID 012407, 4 pages, 2007.
[65]  S. Seki, Y. Yamasaki, Y. Shiomi, S. Iguchi, Y. Onose, and Y. Tokura, “Impurity-doping-induced ferroelectricity in the frustrated antiferromagnet CuFeO2,” Physical Review B, vol. 75, no. 10, Article ID 100403, 2007.
[66]  S. Kanetsuki, S. Mitsuda, T. Nakajima, D. Anazawa, H. A. Katori, and K. Prokes, “Field-induced ferroelectric state in frustrated magnet CuFe 1?xAlxO2,” Journal of Physics, vol. 19, no. 14, Article ID 145244, 2007.
[67]  R. P. Chaudhury, B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, “Suppression and recovery of the ferroelectric phase in multiferroic MnWO4,” Physical Review B, vol. 77, Article ID 104406, 6 pages, 2008.
[68]  R. P. Chaudhury, F. Ye, J. A. Fernandez-Baca et al., “Robust ferroelectric state in multiferroic Mn1?xZnxWO4,” Physical Review B, vol. 83, Article ID 014401, 6 pages, 2011.
[69]  K. C. Liang, Y. Q. Wang, Y. Y. Sun et al., “The complex multiferroic phase diagram of Mn1?xCoxWO4,” New Journal of Physics, vol. 14, no. 14, Article ID 073028, 2012.
[70]  W. Prellier, M. P. Singh, and P. Murugavel, “The single-phase multiferroic oxides: from bulk to thin film,” Journal of Physics, vol. 17, no. 30, pp. R803–R832, 2005.
[71]  W. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and magnetoelectric materials,” Nature, vol. 442, no. 7104, pp. 759–765, 2006.
[72]  Y. Tokura, “Multiferroics-toward strong coupling between magnetization and polarization in a solid,” Journal of Magnetism and Magnetic Materials, vol. 310, no. 2, part 2, pp. 1145–1150, 2007.
[73]  C. N. R. Rao and C. R. Serrano, “New routes to multiferroics,” Journal of Materials Chemistry, vol. 17, pp. 4931–4938, 2007.
[74]  G. Lawes and G. Srinivasan, “Introduction to magnetoelectric coupling and multiferroic films,” Journal of Physics D, vol. 44, no. 24, Article ID 243001, 2011.
[75]  J. van den Brink and D. I. Khomskii, “Multiferroicity due to charge ordering,” Journal of Physics, vol. 20, no. 43, Article ID 434217, 2008.
[76]  P. S. Halasyamani and K. R. Poeppelmeier, “Noncentrosymmetric oxides,” Chemistry of Materials, vol. 10, no. 10, pp. 2753–2769, 1998.
[77]  M. Atanasov and D. Reinen, “Density functional studies on the lone pair effect of the trivalent group (V) elements:? I. electronic structure, vibronic coupling, and chemical criteria for the occurrence of lone pair distortions in AX3 Molecules (A=N to Bi; X=H, and F to I),” The Journal of Physical Chemistry A, vol. 105, no. 22, pp. 5450–5467, 2001.
[78]  R. Seshadri and N. A. Hill, “Visualizing the role of Bi 6s “Lone Pairs” in the off-center distortion in rerromagnetic BiMnO3,” Chemistry of Materials, vol. 13, no. 9, pp. 2892–2899, 2001.
[79]  B. B. Van Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, “The origin of ferroelectricity in magnetoelectric YMnO3,” Nature Materials, vol. 3, no. 3, pp. 164–170, 2004.
[80]  K. Lukaszewicz and J. Karut-Kalicińska, “X-Ray investigations of the crystal structure and phase transitions of YMnO3,” Ferroelectrics, vol. 7, no. 1, pp. 81–82, 1974.
[81]  G. Nénert, Y. Ren, H. Stokes, and T. T. M. Palstra, “Symmetry changes at the ferroelectric transition in the multiferroic YMnO3,” http://arxiv.org/abs/cond-mat/0504546.
[82]  G. Nénert, M. Pollet, S. Marinel, G. R. Blake, A. Meetsma, and T. T. M. Palstra, “Experimental evidence for an intermediate phase in the multiferroic YMnO3,” Journal of Physics, vol. 19, no. 46, Article ID 466212, 2007.
[83]  I.-K. Jeong, N. Hur, and T. Proffen J, “High-temperature structural evolution of hexagonal multiferroic YMnO3 and YbMnO3,” Journal of Applied Crystallography, vol. 40, no. 4, pp. 730–734, 2007.
[84]  A. S. Gibbs, K. S. Knight, and P. Lightfoot, “High-temperature phase transitions of hexagonal YMnO3,” Physical Review B, vol. 83, no. 9, Article ID 094111, 2011.
[85]  S. C. Abrahams, “Atomic displacements at and order of all phase transitions in multiferroic YMnO3 and BaTiO3,” Acta Crystallographica Section B, vol. 65, no. 4, pp. 450–457, 2009.
[86]  T. Lonkai, D. G. Tomuta, U. Amann et al., “Development of the high-temperature phase of hexagonal manganites,” Physical Review B, vol. 69, no. 13, Article ID 134108, 2004.
[87]  E. F. Bertaut and M. Mercier, “Structure magnetique de MnYO3,” Physics Letters A, vol. 5, no. 1, pp. 27–29, 1964.
[88]  W. C. Koehler, H. L. Yakel, E. O. Wollan, and J. W. Cable, “A note on the magnetic structures of rare earth manganese oxides,” Physics Letters, vol. 9, no. 2, pp. 93–95, 1964.
[89]  J. E. Greedan, M. Bieringer, J. F. Britten, D. M. Giaquinta, and H. C. zur Loye, “Synthesis, crystal structure, and unusual magnetic properties of InMnO3,” Journal of Solid State Chemistry, vol. 116, no. 1, pp. 118–130, 1995.
[90]  D. G. Tomuta, S. Ramakrishnan, G. J. Niewenhuys, and J. A. Mydosh, “The magnetic susceptibility, specific heat and dielectric constant of hexagonal YMnO3, LuMnO3 and ScMnO3,” Journal of Physics, vol. 13, no. 20, pp. 4543–4552, 2001.
[91]  T. Katsufuji, M. Masaki, A. Machida et al., “Crystal structure and magnetic properties of hexagonal RMnO3 (R = Y, Lu, and Sc) and the effect of doping,” Physical Review B, vol. 66, no. 13, Article ID 134434, pp. 1344341–1344348, 2002.
[92]  N. Kamegashira, H. Satoh, and S. Ashizuka, “Synthesis and crystal structure of hexagonal DYMnO3,” Materials Science Forum, vol. 449-452, no. II, pp. 1045–1048, 2004.
[93]  M. Fiebig, T. Lottermoser, and R. V. Pisarev, “Spin-rotation phenomena and magnetic phase diagrams of hexagonal RMnO3,” Journal of Applied Physics, vol. 93, no. 10, pp. 8194–8196, 2003.
[94]  X. Fabrèges, I. Mirebeau, P. Bonville et al., “Magnetic order in YbMnO3 studied by neutron diffraction and M?ssbauer spectroscopy,” Physical Review B, vol. 78, no. 21, Article ID 214422, 2008.
[95]  A. Mu?oz, J. A. Alon?o, M. J. Martínez-Lope, M. T. Casáis, J. L. Martínez, and M. T. Fernández-Díaz, “Magnetic structure of hexagonal, RMnO3 (R?=?Y, Sc): thermal evolution from neutron powder diffraction data,” Physical Review B, vol. 62, no. 14, pp. 9498–9510, 2000.
[96]  J. Park, U. Kong, A. Pirogov et al., “Neutron-diffraction studies of YMnO3,” Applied Physics A, vol. 74, no. I, pp. S796–S798, 2002.
[97]  J. Reif, C. Rau, and E. Matthias, “Influence of magnetism on second harmonic generation,” Physical Review Letters, vol. 71, no. 12, pp. 1931–1934, 1993.
[98]  V. V. Pavlov, R. V. Pisarev, A. Kirilyuk, and T. Rasing, “Observation of a transversal nonlinear magneto-optical effect in thin magnetic garnet films,” Physical Review Letters, vol. 78, no. 10, pp. 2004–2007, 1997.
[99]  D. Fr?hlich, St. Leute, V. V. Pavlov, and R. V. Pisarev, “Nonlinear optical spectroscopy of the two-order-parameter compound YMnO3,” Physical Review Letters, vol. 81, no. 15, pp. 3239–3242, 1998.
[100]  M. Fiebig, D. Fr?hlich, K. Kohn et al., “Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation,” Physical Review Letters, vol. 84, no. 24, pp. 5620–5623, 2000.
[101]  T. Iizuka-Sakano, E. Hanamura, and Y. Tanabe, “Second-harmonic-generation spectra of the hexagonal manganites RMnO3,” Journal of Physics, vol. 13, no. 13, pp. 3031–3055, 2001.
[102]  M. Fiebig, C. Degenhardt, and R. V. Pisarev, “Interaction of frustrated magnetic sublattices in ERMnO3,” Physical Review Letters, vol. 88, no. 2, Article ID 027203, pp. 272031–272034, 2002.
[103]  T. Lonkai, D. Hohlwein, J. Ihringer, and W. Prandl, “The magnetic structures of YMnO3-δ and HoMnO3,” Applied Physics A, vol. 74, no. I, pp. S843–S845, 2002.
[104]  N. Iwata, “Dielectric anomalies at magnetic transitions of hexagonal rare earth manganese oxides RMnO3,” Journal of the Physical Society of Japan, vol. 67, no. 9, pp. 3318–3319, 1998.
[105]  H. Sugie, N. Iwata, and K. Kohn, “Magnetic ordering of rare earth ions and magnetic-electric interaction of hexagonal RMnO3 (R?=?Ho, Er, Yb or Lu),” Journal of the Physical Society of Japan, vol. 71, no. 6, pp. 1558–1564, 2002.
[106]  A. Mu?oz, J. A. Alonso, and M. J. Martínez-Lope, “Evolution of the magnetic structure of hexagonal HoMnO3 from neutron powder diffraction data,” Chemistry of Materials, vol. 13, pp. 1497–1505, 2001.
[107]  P. J. Brown and T. Chatterji, “Neutron diffraction and polarimetric study of the magnetic and crystal structures of HoMnO3 and YMnO3,” Journal of Physics, vol. 18, no. 44, pp. 10085–10096, 2006.
[108]  O. P. Vajk, M. Kenzelmann, J. W. Lynn, S. B. Kim, and S.-W. Cheong, “Magnetic order and spin dynamics in ferroelectric HoMnO3,” Physical Review Letters, vol. 94, no. 8, Article ID 087601, 2005.
[109]  M. Fiebig, C. Degenhardt, and R. V. Pisarev, “Magnetic phase diagram of HoMnO3,” Journal of Applied Physics, vol. 91, no. 10, p. 8867, 2002.
[110]  M. Fiebig, T. Lottermoser, T. Lonkai, A. V. Goltsev, and R. V. Pisarev, “Magnetoelectric effects in multiferroic manganites,” Journal of Magnetism and Magnetic Materials, vol. 290-291, pp. 883–890, 2005.
[111]  S. Nandi, A. Kreyssig, L. Tan et al., “Nature of Ho magnetism in multiferroic HoMnO3,” Physical Review Letters, vol. 100, no. 21, Article ID 217201, 2008.
[112]  S. G. Condran and M. L. Plumer, “A model of magnetic order in hexagonal HoMnO3,” Journal of Physics, vol. 22, no. 16, Article ID 162201, 2010.
[113]  B. Lorenz, A. P. Litvinchuk, M. M. Gospodinov, and C. W. Chu, “Field-induced reentrant novel phase and a ferroelectric-magnetic order coupling in HoMnO3,” Physical Review Letters, vol. 92, no. 8, pp. 872041–872044, 2004.
[114]  F. Yen, C. R. dela Cruz, B. Lorenz et al., “Low-temperature dielectric anomalies in HoMnO3: the complex phase diagram,” Physical Review B, vol. 71, Article ID 180407, 4 pages, 2005.
[115]  P. A. Sharma, J. S. Ahn, N. Hur et al., “Thermal conductivity of geometrically frustrated, ferroelectric YMnO3: extraordinary spin-phonon interactions,” Physical Review Letters, vol. 93, no. 17, pp. 1–177202, 2004.
[116]  H. D. Zhou, J. C. Denyszyn, and J. B. Goodenough, “Effect of Ga doping on the multiferroic properties of RMn1-xGaxO3 (R=Ho,Y),” Physical Review B, vol. 72, no. 22, Article ID 224401, 2005.
[117]  H. D. Zhou, J. Lu, R. Vasic et al., “Relief of frustration through spin disorder in multiferroic Ho1-xYxMnO3,” Physical Review B, vol. 75, no. 13, Article ID 132406, 2007.
[118]  R. Vasic, H. D. Zhou, E. Jobiliong, C. R. Wiebe, and J. S. Brooks, “Probing multiferroicity and spin-spin interactions via dielectric measurements on Y-doped HoMnO3 in high magnetic fields,” Physical Review B, vol. 75, no. 1, Article ID 014436, 2007.
[119]  H. D. Zhou, R. Vasic, J. Lu, J. S. Brooks, and C. R. Wiebe, “The effect of Er doping on the multiferroics of Ho1-xErxMnO3,” Journal of Physics, vol. 20, no. 3, Article ID 035211, 2008.
[120]  N. Hur, I. K. Jeong, M. F. Hundley, S. B. Kim, and S. W. Cheong, “Giant magnetoelectric effect in multiferroic HoMnO3 with a high ferroelectric transition temperature,” Physical Review B, vol. 79, Article ID 134120, 2009.
[121]  B. Lorenz, F. Yen, M. M. Gospodinov, and C. W. Chu, “Field-induced phases in HoMnO3 at low temperatures,” Physical Review B, vol. 71, Article ID 014438, 9 pages, 2005.
[122]  V. Skumryev, M. D. Kuz'Min, M. Gospodinov, and J. Fontcuberta, “Anisotropic paramagnetic response of hexagonal R MnO3,” Physical Review B, vol. 79, no. 21, Article ID 212414, 2009.
[123]  H. D. Zhou, J. A. Janik, B. W. Vogt et al., “Specific heat of geometrically frustrated and multiferroic RMn1?x Gax O3 (R = Ho,Y),” Physical Review B, vol. 74, no. 9, Article ID 094426, 2006.
[124]  A. Midya, S. N. Das, P. Mandal, S. Pandya, and V. Ganesan, “Anisotropic magnetic properties and giant magnetocaloric effect in antiferromagnetic RMnO3 crystals (R=Dy, Tb, Ho, and Yb),” Physical Review B, vol. 84, Article ID 235127, 10 pages, 2011.
[125]  P. Liu, X. L. Wang, Z. X. Cheng, Y. Du, and H. Kimura, “Structural, dielectric, antiferromagnetic, and thermal properties of the frustrated hexagonal Ho1?xErxMnO3 manganites,” Physical Review B, vol. 83, Article ID 144404, 8 pages, 2011.
[126]  A. Oleaga, A. Salazar, D. Prabhakaran, J. G. Cheng, and J. S. Zhou, “Critical behavior of the paramagnetic to antiferromagnetic transition in orthorhombic and hexagonal phases of RMnO3 (R=Sm, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y),” Physical Review B, vol. 85, Article ID 184425, 8 pages, 2012.
[127]  C. R. dela Cruz, F. Yen, B. Lorenz et al., “Strong spin-lattice coupling in multiferroic HoMnO3: thermal expansion anomalies and pressure effect,” Physical Review B, vol. 71, Article ID 060407, 4 pages, 2005.
[128]  A. P. Litvinchuk, M. N. Iliev, V. N. Popov, and M. M. Gospodinov, “Raman and infrared-active phonons in hexagonal HoMnO3 single crystals: Magnetic ordering effects,” Journal of Physics, vol. 16, no. 6, pp. 809–819, 2004.
[129]  A. B. Souchkov, J. R. Simpson, M. Quijada et al., “Exchange interaction effects on the optical properties of LuMnO3,” Physical Review Letters, vol. 91, no. 2, pp. 027203/1–027203/4, 2003.
[130]  X. Fabréges, S. Petit, I. Mirebeau et al., “Spin-lattice coupling, frustration, and magnetic order in multiferroic RMnO3,” Physical Review Letters, vol. 103, Article ID 067204, 4 pages, 2009.
[131]  T. A. Tyson, T. Wu, K. H. Ahn, S. B. Kim, and S. W. Cheong, “Local spin-coupled distortions in multiferroic hexagonal HoMnO3,” Physical Review B, vol. 81, Article ID 054101, 7 pages, 2010.
[132]  M. Poirier, J. C. Lemyre, P. O. Lahaie, L. Pinsard-Gaudart, and A. Revcolevschi, “Enhanced magnetoelastic coupling in hexagonal multiferroic HoMnO3,” Physical Review B, vol. 83, no. 5, Article ID 054418, 2011.
[133]  T. Lottermoser and M. Fiebig, “Magnetoelectric behavior of domain walls in multiferroic HoMnO3,” Physical Review B, vol. 70, no. 22, Article ID 220407, 2004.
[134]  H. J. Lewtas, T. Lancaster, P. J. Baker, S. J. Blundell, D. Prabhakaran, and F. L. Pratt, “Local magnetism and magnetoelectric effect in HoMnO3 studied with muon-spin relaxation,” Physical Review B, vol. 81, no. 1, Article ID 014402, 2010.
[135]  J. C. Lemyre and M. Poirier, “Microwave investigation of the phase diagram of hexagonal multiferroic HoMnO3,” Physical Review B, vol. 79, Article ID 094423, 6 pages, 2009.
[136]  O. P. Vajk, M. Kenzelmann, J. W. Lynn, S. B. Kim, and S. W. Cheong, “Neutron-scattering studies of magnetism in multiferroic HoMnO3,” Journal of Applied Physics, vol. 99, no. 8, Article ID 08E301, 2006.
[137]  S. Lee, A. Pirogov, M. Kang et al., “Giant magneto-elastic coupling in multiferroic hexagonal manganites,” Nature, vol. 451, pp. 805–808, 2008.
[138]  T. Chatterji, B. Ouladdiaf, P. F. Henry, and D. Bhattacharya, “Magnetoelastic effects in multiferroic YMnO3,” Journal of Physics: Condensed Matter, vol. 24, Article ID 336003, 2012.
[139]  T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, “Magnetic phase control by an electric field,” Nature, vol. 430, no. 6999, pp. 541–544, 2004.
[140]  B. G. Ueland, J. W. Lynn, M. Laver, Y. J. Choi, and S. W. Cheong, “Origin of electric-field-induced magnetization in multiferroic HoMnO3,” Physical Review Letters, vol. 104, Article ID 147204, 14 pages, 2010.
[141]  C. J. Fennie and K. M. Rabe, “Ferroelectric transition in YMnO3 from first principles,” Physical Review B, vol. 72, Article ID 100103, 2005.
[142]  M. Stengel, C. J. Fennie, and P. Ghosez, “Electrical properties of improper ferroelectrics from first principles,” Physical Review B, vol. 86, no. 9, Article ID 094112, 9 pages, 2012.
[143]  D.-Y. Cho, J.-Y. Kim, B.-G. Park et al., “Ferroelectricity driven by y d0-ness with rehybridization in YMnO3,” Physical Review Letters, vol. 98, no. 21, Article ID 217601, 2007.
[144]  T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto, and H. Takagi, “Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R=Y, Yb, and Lu),” Physical Review B, vol. 64, no. 10, Article ID 104419, pp. 1044191–1044196, 2001.
[145]  B. B. V. Aken, J. W. G. Bos, R. A. de Groot, and T. T. M. Palstra, “Quantum 120-degrees model on pyrochlore lattice: orbital ordering in MnV2O4l,” Physical Review B, vol. 63, Article ID 125127, 2001.
[146]  Y. Aikawa, T. Katsufuji, T. Arima, and K. Kato, “Effect of Mn trimerization on the magnetic and dielectric properties of hexagonal YMnO3,” Physical Review B, vol. 71, Article ID 184418, 2005.
[147]  T. Lonkai, D. G. Tomuta, J. U. Hoffmann, R. Schneider, D. Hohlwein, and J. Ihringer, “Magnetic two-dimensional short-range order in hexagonal manganites,” Journal of Applied Physics, vol. 93, no. 10, pp. 8191–8193, 2003.
[148]  J. Park, J. G. Park, G. S. Jeon et al., “Magnetic ordering and spin-liquid state of YMnO3,” Physical Review B, vol. 68, no. 10, Article ID 104426, 6 pages, 2003.
[149]  A. Dixit, A. E. Smith, M. A. Subramanian, and G. Lawes, “Suppression of multiferroic order in hexagonal YMn1?x Inx O3 ceramics,” Solid State Communications, vol. 150, no. 15-16, pp. 746–750, 2010.
[150]  A. K. Singh, S. Patnaik, S. D. Kaushik, and V. Siruguri, “Dominance of magnetoelastic coupling in hexagonal multiferroic YMnO3,” Physical Review B, vol. 81, Article ID 184406, 2010.
[151]  E. F. Bertaut, R. Pauthenet, and M. Mercier, “Sur des proprietes magnetiques du manganite d'yttrium,” Physics Letters, vol. 18, no. 1, p. 13, 1965.
[152]  D. P. Kozlenko, S. E. Kichanov, S. Lee, J. G. Park, and B. N. Savenko, “Pressure-induced spin fluctuations and spin reorientation in hexagonal manganites,” Journal of Physics, vol. 19, no. 15, Article ID 156228, 2007.
[153]  M. Janoschek, B. Roessli, L. Keller, S. N. Gvasaliya, K. Conder, and E. Pomjakushina, “Reduction of the ordered magnetic moment in YMnO3 with hydrostatic pressure,” Journal of Physics, vol. 17, no. 42, pp. L425–L430, 2005.
[154]  S. Petit, F. Moussa, M. Hennion, S. Pailhés, L. Pinsard-Gaudart, and A. Ivanov, “Spin phonon coupling in hexagonal multiferroic YMnO3,” Physical Review Letters, vol. 99, no. 26, Article ID 266604, 2007.
[155]  T. J. Sato, S. H. Lee, T. Katsufuji et al., “Unconventional spin fluctuations in the hexagonal antiferromagnet YMnO3,” Physical Review B, vol. 68, no. 1, Article ID 014432, pp. 144321–144325, 2003.
[156]  T. Chatterji, S. Ghosh, A. Singh, L. P. Regnault, and M. Rheinst?dter, “Spin dynamics of YMnO3 studied via inelastic neutron scattering and the anisotropic Hubbard model,” Physical Review B, vol. 76, Article ID 144406, 2007.
[157]  F. Demmel and T. Chatterji, “Persistent spin waves above the Néel temperature in YMnO3,” Physical Review B, vol. 76, Article ID 212402, 4 pages, 2007.
[158]  M. Tachibana, J. Yamazaki, H. Kawaij, and T. Atake, “Heat capacity and critical behavior of hexagonal YMnO3,” Physical Review B, vol. 72, Article ID 064434, 5 pages, 2005.
[159]  S. Lee, A. Pirogov, J. H. Han, J. G. Park, A. Hoshikawa, and T. Kamiyama, “Direct observation of a coupling between spin, lattice and electric dipole moment in multiferroic YMnO3,” Physical Review B, vol. 71, Article ID 180413, 4 pages, 2005.
[160]  M. Poirier, F. Laliberté, L. Pinsard-Gaudart, and A. Revcolevschi, “Magnetoelastic coupling in hexagonal multiferroic YMnO3 using uktrasound measurements,” Physical Review B, vol. 76, Article ID 174426, 2007.
[161]  A. Pimenov, A. A. Mukhin, V. Y. Ivanov, V. D. Travkin, A. M. Balbashov, and A. Loidl, “Possible evidence for electromagnons in multiferroic manganites,” Nature Physics, vol. 2, no. 2, pp. 97–100, 2006.
[162]  D. Senff, P. Link, K. Hradil et al., “Magnetic excitations in multiferroic TbMnO3: evidence for a hybridized soft mode,” Physical Review Letters, vol. 98, no. 13, Article ID 137206, 2007.
[163]  H. Fukumura, S. Matsui, H. Harima et al., “Raman scattering studies on multiferroic YMnO3,” Journal of Physics, vol. 19, no. 36, Article ID 365239, 2007.
[164]  M. Zaghrioui, V. T. Phuoc, R. A. Souza, and M. Gervais, “Polarized reflectivity and lattice dynamics calculation of multiferroic YMnO3,” Physical Review B, vol. 78, Article ID 184305, 2008.
[165]  J. Vermette, S. Jandl, A. A. Mukhin et al., “Raman study of the antiferromagnetic phase transitions in hexagonal YMnCO3 and LuMnO3,” Journal of Physics, vol. 22, no. 35, Article ID 356002, 2010.
[166]  J. Vermette, S. Jandl, and M. M. Gospodinov, “Raman study of spin-phonon coupling in ERMnO3,” Journal of Physics, vol. 20, no. 42, Article ID 425219, 2008.
[167]  M. Fiebig, D. Fr?hlich, B. B. Krichevtsov, and R. V. Pisarev, “Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O3,” Physical Review Letters, vol. 73, no. 15, pp. 2127–2130, 1994.
[168]  M. Fiebig, D. Fr?hlich, G. Sluyterman, and R. V. Pisarev, “Domain topography of antiferromagnetic Cr2O3 by second harmonic generation,” Applied Physics Letters, vol. 66, no. 21, article 2906, 3 pages, 1995.
[169]  M. Fiebig, D. Fr?hlich, S. Leute, and R. V. Pisarev, “Second harmonic spectroscopy and control of domain size in antiferromagnetic YMnO3,” Journal of Applied Physics, vol. 83, no. 11, pp. 6560–6562, 1998.
[170]  M. Fiebig, T. Lottermoser, D. Fr?hlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains,” Nature, vol. 419, no. 6909, pp. 818–820, 2002.
[171]  M. Fiebig, D. Fr?hlich, S. Leute, and R. V. Pisarev, “Topography of antiferromagnetic domains using second harmonic generation with an external reference,” Applied Physics B, vol. 66, no. 3, pp. 265–270, 1998.
[172]  S. Leute, T. Lottermoser, and D. Fr?hlich, “Nonlinear spatially resolved phase spectroscopy,” Optics Letters, vol. 24, no. 21, pp. 1520–1522, 1999.
[173]  E. Hanamura, K. Hagita, and Y. Tanabe, “Clamping of ferroelectric and antiferromagnetic order parameters of YMnO3,” Journal of Physics, vol. 15, no. 3, pp. L103–L109, 2003.
[174]  A. V. Goltsev, R. V. Pisarev, T. Lottermoser, and M. Fiebig, “Structure and interaction of antiferromagnetic domain walls in hexagonal YMnO3,” Physical Review Letters, vol. 90, no. 17, Article ID 177204, 4 pages, 2003.
[175]  M. Fiebig, A. V. Goltsev, T. Lottermoser, and R. V. Pisarev, “Structure and interaction of domain walls in YMnO3,” Journal of Magnetism and Magnetic Materials, vol. 272-276, no. I, pp. 353–354, 2004.
[176]  H. J. Lewtas, A. T. Boothroyd, M. Rotter et al., “Magnetic excitations in multiferroic LuMnO3 studied by inelastic neutron scattering,” Physical Review B, vol. 82, no. 18, Article ID 184420, 7 pages, 2010.
[177]  K. Uusi-Esko, J. Malm, N. Imamura, H. Yamauchi, and M. Karppinen, “Characterization of RMnO3 (R = Sc, Y, Dy-Lu): High-pressure synthesized metastable perovskites and their hexagonal precursor phases,” Materials Chemistry and Physics, vol. 112, no. 3, pp. 1029–1034, 2008.
[178]  H. W. Xu, J. Iwasaki, T. Shimizu, H. Satoh, and N. Kamegashira, “Structure, magnetic susceptibility and heat capacity of ScMnO3,” Journal of Alloys and Compounds, vol. 221, no. 1-2, pp. 274–279, 1995.
[179]  M. Bieringer and J. E. Greedan, “Magnetic structure and spin reorientation transition in ScMnO3,” Journal of Solid State Chemistry, vol. 143, no. 1, pp. 132–139, 1999.
[180]  M. Fiebig, D. Fr?hlich, T. Lottermoser, and R. V. Pisarev, “Photoinduced instability of the magnetic structure of hexagonal ScMnO3,” Physical Review B, vol. 65, no. 22, Article ID 224421, 6 pages, 2002.
[181]  E. Galstyan, B. Lorenz, K. S. Nartyrosyan et al., “Magnetic hysteretic phenomena in multiferroic HoMnO3 single crystals and polycrystals with nano- and micrometer particle size,” Journal of Physics, vol. 20, no. 32, Article ID 325241, 2008.
[182]  B. B. Van Aken and T. T. M. Palstra, “Influence of magnetic on ferroelectric ordering in LuMnO3,” Physical Review B, vol. 69, no. 13, Article ID 134113, 2004.
[183]  M. Bieringer, J. E. Greedan, and A. S. Wills, “Investigation of magnetic structure evolution in the substitutional solid solution ScxLu1?xMnO3,” Applied Physics A, vol. 74, pp. S601–S603, 2002.
[184]  M. Fiebig, D. Fr?hlich, T. Lottermoser, and K. Kohn, “Spin-angle topography of hexagonal manganites by magnetic second-harmonic generation,” Applied Physics Letters, vol. 77, no. 26, p. 4401, 2000.
[185]  M. C. Sekhar, S. Lee, G. Choi, C. Lee, and J. G. Park, “Doping effects of hexagonal manganites Er1?xYxMnO3 with triangular spin structure,” Physical Review B, vol. 72, no. 1, Article ID 014402, 6 pages, 2005.
[186]  D. Meier, H. Ryll, K. Kiefer et al., “Mutual induction of magnetic 3d and 4f order in multiferroic hexagonal ERMnO3,” Physical Review B, vol. 86, no. 18, Article ID 184415, 8 pages.
[187]  J. Park, U. Kong, S. I. Choi, J. G. Park, C. Lee, and W. Jo, “Magnetic structure studies of ERMnO3,” Applied Physics A, vol. 74, no. I, pp. S802–S804, 2002.
[188]  E. C. Standard, T. Stanislavchuk, A. A. Sirenko, N. Lee, and S. W. Cheong, “Magnons and crystal-field transitions in hexagonal RMnO3 (R = Er, Tm, Yb, Lu) single crystals,” Physical Review B, vol. 85, no. 14, Article ID 144422, 11 pages, 2012.
[189]  H. A. Salama and G. A. Stewart, “Exchange-induced Tm magnetism in multiferroic h-TmMnO3,” Journal of Physics, vol. 21, no. 38, Article ID 386001, 2009.
[190]  J.-S. Zhou, J. B. Goodenough, J. M. Gallardo-Amores, E. Morán, M. A. Alario-Franco, and R. Caudillo, “Hexagonal versus perovskite phase of manganite RMnO3 (R=Y, Ho, Er, Tm, Yb, Lu),” Physical Review B, vol. 74, no. 1, Article ID 014422, 7 pages, 2006.
[191]  U. Adem, M. Mostovoy, N. Bellido, A. A. Nugroho, C. Simon, and T. T. M. Palstra, “Scaling behavior of the magnetocapacitance of YbMnO3,” Journal of Physics, vol. 21, no. 49, Article ID 496002, 2009.
[192]  H. A. Salama, G. A. Stewart, D. H. Ryan, M. Elouneg-Jamroz, and A. V. J. Edge, “A M?ssbauer spectroscopy investigation of h-YbMnO3,” Journal of Physics, vol. 20, no. 25, Article ID 255213, 2008.
[193]  H. A. Salama, C. J. Voyer, D. H. Ryan, and G. A. Stewart, “Magnetic order of the rare earth sublattice in h-YbMnO3,” Journal of Applied Physics, vol. 105, no. 7, Article ID 07E110, 3 pages, 2009.
[194]  V. Y. Ivanov, A. A. Mukhin, A. S. Prokhorov, A. M. Balbashov, and L. D. Iskhakova, “Magnetic properties and phase transitions in hexagonal DYMnO3 single crystals,” Physics of the Solid State, vol. 48, no. 9, pp. 1726–1729, 2006.
[195]  S. Harikrishnan, S. R??ler, C. M. N. Kumar et al., “Phase transitions and rare-earth magnetism in hexagonal and orthorhombic DyMnO3 single crystals,” Journal of Physics, vol. 21, no. 9, Article ID 096002, 2009.
[196]  C. Wehrenfennig, D. Meier, T. Lottermoser et al., “Incompatible magnetic order in multiferroic hexagonal DYMnO3,” Physical Review B, vol. 82, no. 10, Article ID 100414, 2010.
[197]  D. M. Giaquinta and H. C. zur Loye, “Indium manganese trioxide: a new transition metal oxide with an unusual ABO3 structure,” Journal of the American Chemical Society, vol. 114, no. 27, pp. 10952–10953, 1992.
[198]  G. V. Vajenine, R. Hoffmann, and H. C. Zur Loye, “The electronic structures and magnetic properties of one-dimensional ABO6 chains in Sr3ABO6 (A = Co, Ni; B = Pt, Ir) and two-dimensional MO3 sheets in InMO3 (M = Fe, Mn),” Chemical Physics, vol. 204, no. 2-3, pp. 469–478, 1996.
[199]  C. R. Serrao, S. B. Krupanidhi, J. Bhattacharjee, U. V. Waghmare, A. K. Kundu, and C. N. R. Rao, “InMnO3: a biferroic,” Journal of Applied Physics, vol. 100, no. 7, Article ID 076104, 2006.
[200]  A. A. Belik, S. Kamba, M. Savinov et al., “Magnetic and dielectric properties of hexagonal InMnO3,” Physical Review B, vol. 79, no. 5, Article ID 054411, 2009.
[201]  D. A. Rusakov, A. A. Belik, S. Kamba et al., “Structural evolution and properties of solid solutions of hexagonal InMnO3 and InGaO3,” Inorganic Chemistry, vol. 50, no. 8, pp. 3559–3566, 2011.
[202]  S. C. Abrahams, “Ferroelectricity and structure in the YMnO3 family,” Acta Crystallographica, vol. 57, pp. 485–490, 2001.
[203]  M. A. Oak, J. H. Lee, H. M. Jang, J. S. Goh, H. J. Choi, and J. F. Scott, “4d-5p Orbital mixing and asymmetric in 4d–O 2p hybridization in InMnO3: a new bonding mechanism for hexagonal ferroelectricity,” Physical Review Letters, vol. 106, no. 4, Article ID 047601, 4 pages, 2011.
[204]  X. Fabréges, I. Mirebeau, S. Petit, P. Bonville, and A. A. Belik, “Frustration-driven magnetic order in hexagonal InMnO3,” Physical Review B, vol. 84, Article ID 054455, 2011.
[205]  Y. Kumagai, A. Belik, M. Lilienblum, N. Leo, M. Fiebig, and N. A. Spaldin, “Observation of persistent centrosymmetricity in the hexagonal manganite family,” Physical Review B, vol. 85, no. 17, Article ID 174422, 7 pages, 2012.
[206]  I. Munawar and S. H. Curnoe, “Theory of magnetic phases of hexagonal rare earth manganites,” Journal of Physics, vol. 18, no. 42, article no. 004, pp. 9575–9583, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133