全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Topological Order: From Long-Range Entangled Quantum Matter to a Unified Origin of Light and Electrons

DOI: 10.1155/2013/198710

Full-Text   Cite this paper   Add to My Lib

Abstract:

We review the progress in the last 20–30 years, during which we discovered that there are many new phases of matter that are beyond the traditional Landau symmetry breaking theory. We discuss new “topological” phenomena, such as topological degeneracy that reveals the existence of those new phases—topologically ordered phases. Just like zero viscosity defines the superfluid order, the new “topological” phenomena define the topological order at macroscopic level. More recently, we found that at the microscopical level, topological order is due to long-range quantum entanglements. Long-range quantum entanglements lead to many amazing emergent phenomena, such as fractional charges and fractional statistics. Long-range quantum entanglements can even provide a unified origin of light and electrons; light is a fluctuation of long-range entanglements, and electrons are defects in long-range entanglements. 1. Introduction 1.1. Phases of Matter and Landau Symmetry-Breaking Theory Although all matter is formed by only three kinds of particles: electrons, protons, and neutrons, matter can have many different properties and appear in many different forms, such as solid, liquid, conductor, insulator, superfluid, and magnet. According to the principle of emergence in condensed matter physics, the rich properties of materials originate from the rich ways in which the particles are organized in the materials. Those different organizations of the particles are formally called the orders in the materials. For example, particles have a random distribution in a liquid (see Figure 1(a)), so a liquid remains the same as we displace it by an arbitrary distance. We say that a liquid has a “continuous translation symmetry.” After a phase transition, a liquid can turn into a crystal. In a crystal, particles organize into a regular array (a lattice) (see Figure 1(b)). A lattice remains unchanged only when we displace it by a particular set of distances (integer times of lattice constant), so a crystal has only “discrete translation symmetry.” The phase transition between a liquid and a crystal is a transition that reduces the continuous translation symmetry of the liquid to the discrete symmetry of the crystal. Such a change in symmetry is called “spontaneous symmetry breaking.” We note that the equation of motions that governs the dynamics of the particles respects the continuous translation symmetry for both cases of liquid and crystal. However, in the case of crystal, the stronger interaction makes the particles to prefer being separated by a fixed distance and a fixed angle.

References

[1]  L. D. Landau, “Theory of phase transformations,” Physikalische Zeitschrift der Sowjetunion, vol. 11, p. 26, 1937.
[2]  V. L. Ginzburg and L. D. Landau, “On the theory of superconductivity,” Zhurnal EksperImental'NoI I TeoretIcheskoI FIzIkI, vol. 20, pp. 1064–1082, 1950.
[3]  L. D. Landau and E. M. Lifschitz, Statistical Physics—Course of Theoretical Physics, vol. 5, Pergamon, London, UK, 1958.
[4]  V. Kalmeyer and R. B. Laughlin, “Equivalence of the resonating-valence-bond and fractional quantum Hall states,” Physical Review Letters, vol. 59, pp. 2095–2098, 1987.
[5]  X. G. Wen, F. Wilczek, and A. Zee, “Chiral spin states and superconductivity,” Physical Review B, vol. 39, no. 16, pp. 11413–11423, 1989.
[6]  X. G. Wen, “Vacuum degeneracy of chiral spin states in compactified space,” Physical Review B, vol. 40, pp. 7387–7390, 1989.
[7]  X. G. Wen, “Topological orders in rigid states,” International Journal of Modern Physics B, vol. 4, p. 239, 1990.
[8]  E. Witten, “Quantum field theory and the Jones polynomial,” Communications in Mathematical Physics, vol. 121, no. 3, pp. 351–399, 1989.
[9]  X. G. Wen and Q. Niu, “Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces,” Physical Review B, vol. 41, pp. 9377–9396, 1990.
[10]  E. Keski-Vakkuri and X. G. Wen, “the ground state structure and modular transformations of fractional quantum hall states on a torus,” International Journal of Modern Physics B, vol. 7, p. 4227, 1993.
[11]  D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-dimensional magnetotransport in the extreme quantum limit,” Physical Review Letters, vol. 48, no. 22, pp. 1559–1562, 1982.
[12]  R. B. Laughlin, “Anomalous quantum hall effect: an incompressible quantum fluid with fractionally charged excitations,” Physical Review Letters, vol. 50, pp. 1395–1398, 1983.
[13]  S. M. Girvin and A. H. MacDonald, “Off-diagonal long-range order, oblique confinement, and the fractional quantum Hall effect,” Physical Review Letters, vol. 58, pp. 1252–1255, 1987.
[14]  N. Read, “Order parameter and Ginzburg-Landau theory for the fractional quantum Hall effect,” Physical Review Letters, vol. 62, pp. 86–89, 1989.
[15]  S. C. Zhang, T. H. Hansson, and S. Kivelson, “Effective-field-theory model for the fractional quantum Hall effect,” Physical Review Letters, vol. 62, pp. 82–85, 1989.
[16]  Z. F. Ezawa and A. Iwazaki, “Chern-Simons gauge theories for the fractional-quantum-Hall-effect hierarchy and anyon superconductivity,” Physical Review B, vol. 43, no. 4, pp. 2637–2641, 1991.
[17]  B. Blok and X. G. Wen, “Effective theories of the fractional quantum Hall effect: Hierarchy construction,” Physical Review B, vol. 42, pp. 8145–8156, 1990.
[18]  J. Frohlich and A. Zee, “Large scale physics of the quantum hall fluid,” Nuclear Physics B, vol. 364, pp. 517–540, 1991.
[19]  J. Frohlich and T. Kerler, “Universality in quantum Hall systems,” Nuclear Physics B, vol. 354, pp. 369–417, 1991.
[20]  X. G. Wen and A. Zee, “Classification of Abelian quantum Hall states and matrix formulation of topological fluids,” Physical Review B, vol. 46, pp. 2290–2301, 1992.
[21]  J. Frohlich and U. M. Studer, “Gauge invariance and current algebra in nonrelativistic many-body theory,” Reviews of Modern Physics, vol. 65, pp. 733–802, 1993.
[22]  X. G. Wen, “Topological orders and Chern-Simons theory in strongly correlated quantum liquid,” International Journal of Modern Physics B, vol. 5, no. 10, p. 1641, 1991.
[23]  X. G. Wen, “Mean-field theory of spin-liquid states with finite energy gap and topological orders,” Physical Review B, vol. 44, pp. 2664–2672, 1991.
[24]  T. H. Hansson, V. Oganesyan, and S. L. Sondhi, “Superconductors are topologically ordered,” Annals of Physics, vol. 313, no. 2, pp. 497–538, 2004.
[25]  N. Read and S. Sachdev, “Large-N expansion for frustrated quantum antiferromagnets,” Physical Review Letters, vol. 66, pp. 1773–1776, 1991.
[26]  G. Misguich, C. Lhuillier, B. Bernu, and C. Waldtmann, “Spin-liquid phase of the multiple-spin exchange Hamiltonian on the triangular lattice,” Physical Review B, vol. 60, no. 2, pp. 1064–1074, 1999.
[27]  R. Moessner and S. L. Sondhi, “Resonating valence bond phase in the triangular lattice quantum Dimer model,” Physical Review Letters, vol. 86, pp. 1881–1884, 2001.
[28]  A. Y. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics, vol. 303, pp. 2–30, 2003.
[29]  M. Levin and X. G. Wen, “String-net condensation: a physical mechanism for topological phases,” Physical Review B, vol. 71, Article ID 045110, 21 pages, 2005.
[30]  X. G. Wen, “Origin of gauge Bosons from strong quantum correlations,” Physical Review Letters, vol. 88, Article ID 011602, 4 pages, 2002.
[31]  T. Senthil and O. Motrunich, “Microscopic models for fractionalized phases in strongly correlated systems,” Physical Review B, vol. 66, Article ID 205104, 9 pages, 2002.
[32]  X. G. Wen, “Artificial light and quantum order in systems of screened dipoles,” Physical Review B, vol. 68, Article ID 115413, 12 pages, 2003.
[33]  X. G. Wen, “Quantum order from string-net condensations and the origin of light and massless fermions,” Physical Review D, vol. 68, Article ID 065003, 25 pages, 2003.
[34]  R. Moessner and S. L. Sondhi, “Three-dimensional resonating-valence-bond liquids and their excitations,” Physical Review B, vol. 68, Article ID 184512, 8 pages, 2003.
[35]  M. Hermele, M. P. A. Fisher, and L. Balents, “Pyrochlore photons: the U(1) spin liquid in a s = 1/2 three-dimensional frustrated magnet,” Physical Review B, vol. 69, no. 6, Article ID 064404, 21 pages, 2004.
[36]  M. A. Levin and X. G. Wen, “Colloquium: photons and electrons as emergent phenomena,” Reviews of Modern Physics, vol. 77, pp. 871–879, 2005.
[37]  M. Levin and X. G. Wen, “Quantum ether: photons and electrons from a rotor model,” Physical Review B, vol. 73, Article ID 035122, 10 pages, 2006.
[38]  C. Castelnovo, R. Moessner, and S. L. Sondhi, “Spin ice, fractionalization, and topological order,” Annual Review of Condensed Matter Physics, vol. 3, pp. 35–55, 2012.
[39]  B. I. Halperin, “Statistics of quasiparticles and the hierarchy of fractional quantized Hall states,” Physical Review Letters, vol. 52, pp. 1583–1586, 1984.
[40]  D. Arovas, J. R. Schrieffer, and F. Wilczek, “Fractional statistics and the quantum Hall effect,” Physical Review Letters, vol. 53, pp. 722–723, 1984.
[41]  X. G. Wen, “Non-Abelian statistics in the fractional quantum Hall states,” Physical Review Letters, vol. 66, pp. 802–805, 1991.
[42]  G. Moore and N. Read, “Nonabelions in the fractional quantum hall effect,” Nuclear Physics B, vol. 360, no. 2-3, pp. 362–396, 1991.
[43]  R. Jackiw and C. Rebbi, “Solitons with fermion number,” Physical Review D, vol. 13, no. 12, pp. 3398–3409, 1976.
[44]  E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, “Topological quantum memory,” Journal of Mathematical Physics, vol. 43, no. 9, pp. 4452–4505, 2002.
[45]  B. I. Halperin, “Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential,” Physical Review B, vol. 25, pp. 2185–2190, 1982.
[46]  X. G. Wen, “Gapless boundary excitations in the quantum Hall states and in the chiral spin states,” Physical Review B, vol. 43, pp. 11025–11036, 1991.
[47]  A. H. MacDonald, “Edge states in the fractional-quantum-Hall-effect regime,” Physical Review Letters, vol. 64, pp. 220–223, 1990.
[48]  K. von Klitzing, G. Dorda, and M. Pepper, “New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance,” Physical Review Letters, vol. 45, pp. 494–497, 1980.
[49]  M. Levin and X. G. Wen, “Fermions, strings, and gauge fields in lattice spin models,” Physical Review B, vol. 67, Article ID 245316, 10 pages, 2003.
[50]  A. D'Adda, P. D. Vecchia, and M. Luscher, “A expandable series of non-linear σ models with instantons,” Nuclear Physics B, vol. 146, no. 1, pp. 63–76, 1978.
[51]  E. Witten, “Instatons, the quark model, and the 1/N expansion,” Nuclear Physics B, vol. 149, no. 2, pp. 285–320, 1979.
[52]  G. Baskaran and P. W. Anderson, “Gauge theory of high-temperature superconductors and strongly correlated Fermi systems,” Physical Review B, vol. 37, pp. 580–583, 1988.
[53]  I. Aeck and J. B. Marston, “Large-n limit of the Heisenberg-Hubbard model: implications for high-Tc superconductors,” Physical Review B, vol. 37, pp. 3774–3777, 1988.
[54]  K. G. Wilson, “Confinement of quarks,” Physical Review D, vol. 10, pp. 2445–2459, 1974.
[55]  J. Kogut and L. Susskind, “Hamiltonian formulation of Wilson's lattice gauge theories,” Physical Review D, vol. 11, no. 2, pp. 395–408, 1975.
[56]  T. Banks, R. Myerson, and J. Kogut, “Phase transitions in Abelian lattice gauge theories,” Nuclear Physics, Section B, vol. 129, no. 3, pp. 493–510, 1977.
[57]  J. B. Kogut, “An introduction to lattice gauge theory and spin systems,” Reviews of Modern Physics, vol. 51, pp. 659–713, 1979.
[58]  R. Savit, “Duality in field theory and statistical systems,” Reviews of Modern Physics, vol. 52, pp. 453–487, 1980.
[59]  M. B. Hastings and X. G. Wen, “Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance,” Physical Review B, vol. 72, Article ID 045141, 14 pages, 2005.
[60]  D. Foerster, H. B. Nielsen, and M. Ninomiya, “Dynamical stability of local gauge symmetry creation of light from chaos,” Physics Letters B, vol. 94, p. 135, 1980.
[61]  O. I. Motrunich and T. Senthil, “Exotic order in simple models of Bosonic systems,” Physical Review Letters, vol. 89, Article ID 277004, 4 pages, 2002.
[62]  J. M. Leinaas and J. Myrheim, “On the theory of identical particles,” Il Nuovo Cimento B Series 11, vol. 37, no. 1, pp. 1–23, 1977.
[63]  F. Wilczek, “quantum mechanics of fractional-spin particles,” Physical Review Letters, vol. 49, pp. 957–959, 1982.
[64]  I. Tamm, “Die verallgemeinerten kugelfunktionen und die wellenfunktionen eines elektrons im felde eines magnetpoles,” Zeitschrift für Physik, vol. 71, no. 3-4, pp. 141–150, 1931.
[65]  R. Jackiw and C. Rebbi, “Spin from isospin in a gauge theory,” Physical Review Letters, vol. 36, no. 19, pp. 1116–1119, 1976.
[66]  F. Wilczek, “Remarks on Dyons,” Physical Review Letters, vol. 48, pp. 1146–1149, 1982.
[67]  A. S. Goldhaber, “Electromagnetism, spin, and statistics,” Physical Review Letters, vol. 49, pp. 905–908, 1982.
[68]  K. Lechner and P. A. Marchetti, “Spin-statistics transmutation in relativistic quantum field theories of dyons,” Journal of High Energy Physics, vol. 2000, 2000.
[69]  K. Walker, Z. Wang, L. Fidkowski, M. Freedman, and C. Nayak, “From String Nets to Nonabelions,” Communications in Mathematical Physics, vol. 287, no. 3, pp. 805–827, 2009.
[70]  Z. Wang, Topological Quantum Computation, CBMS Regional Conference Series in Mathematics, American Mathematical Society, 2010.
[71]  F. Wilczek and A. Zee, “appearance of gauge structure in simple dynamical systems,” Physical Review Letters, vol. 52, pp. 2111–2114, 1984.
[72]  X. G. Wen and A. Zee, “Topological degeneracy of quantum Hall fluids,” Physical Review B, vol. 58, no. 23, pp. 15717–15728, 1998.
[73]  F. D. M. Haldane and E. H. Rezayi, “Periodic Laughlin-Jastrow wave functions for the fractional quantized Hall effect,” Physical Review B, vol. 31, no. 4, pp. 2529–2531, 1985.
[74]  Y. Zhang, T. Grover, A. Turner, M. Oshikawa, and A. Vishwanath, “Quasiparticle statistics and braiding from ground-state entanglement,” Physical Review B, vol. 85, Article ID 235151, 15 pages, 2012.
[75]  Y. Zhang and A. Vishwanath, “Establishing non-Abelian topological order in Gutzwiller projected Chern insulators via Entanglement Entropy and Modular S-matrix,” http://arxiv.org/abs/1209.2424.
[76]  C. N. Yang, “Concept of off-diagonal long-range order and the quantum phases of liquid he and of superconductors,” Reviews of Modern Physics, vol. 34, pp. 694–704, 1962.
[77]  C. L. Kane and M. P. A. Fisher, “Quantized thermal transport in the fractional quantum Hall effect,” Physical Review B, vol. 55, pp. 15832–15837, 1997.
[78]  A. Kitaev and J. Preskill, “Topological entanglement entropy,” Physical Review Letters, vol. 96, Article ID 110404, 4 pages, 2006.
[79]  M. Levin and X. G. Wen, “Detecting topological order in a ground state wave function,” Physical Review Letters, vol. 96, Article ID 110405, 4 pages, 2006.
[80]  H. K. Onnes, “Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures, etc. IV. The resistance of pure mercury at helium temperatures,” Communications from the Physical Laboratory at the University of Leiden, no. 120b, 1911.
[81]  H. K. Onnes, “Further experiments with liquid helium. D. On the change of electric resistance of pure metals at very low temperatures, etc. V. The disappearance of the resistance of mercury,” Communications from the Physical Laboratory at the University of Leiden, no. 122b, 1911.
[82]  J. Bardeen, L. N. Cooper, and J. R. Schrieer, “Theory of superconductivity,” Physical Review, vol. 108, pp. 1175–1204, 1957.
[83]  X. Chen, Z. C. Gu, and X. G. Wen, “Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order,” Physical Review B, vol. 82, Article ID 155138, 28 pages, 2010.
[84]  F. Verstraete, J. I. Cirac, J. I. Latorre, E. Rico, and M. M. Wolf, “Renormalization-group transformations on quantum states,” Physical Review Letters, vol. 94, no. 14, Article ID 140601, 4 pages, 2005.
[85]  G. Vidal, “Entanglement renormalization,” Physical Review Letters, vol. 99, no. 22, Article ID 220405, 4 pages, 2007.
[86]  S. Bravyi, M. B. Hastings, and S. Michalakis, “Topological quantum order: stability under local perturbations,” Journal of Mathematical Physics, vol. 51, no. 9, Article ID 093512, 33 pages, 2010.
[87]  S. M. Hong, “On symmetrization of 6j-symbols and Levin-Wen Hamiltonian,” http://arxiv.org/abs/0907.2204.
[88]  Z.-C. Gu, Z. Wang, and X.-G. Wen, “A classification of 2D fermionic and bosonic topological orders,” http://arxiv.org/abs/1010.1517.
[89]  H. Li and F. D. M. Haldane, “entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-abelian fractional quantum hall effect states,” Physical Review Letters, vol. 101, Article ID 010504, 4 pages.
[90]  V. G. Turaev, Quantum Invariants of Knots and 3-Manifolds, De Gruyter, New York, NY, USA, 1994.
[91]  M. Freedman, C. Nayak, K. Shtengel, K. Walker, and Z. Wang, “A class of P,T-invariant topological phases of interacting electrons,” Annals of Physics, vol. 310, no. 2, pp. 428–492, 2004.
[92]  Y. Hu, S. D. Stirling, and Y.-S. Wu, “Ground-state degeneracy in the Levin-Wen model for topological phases,” Physical Review B, vol. 85, no. 7, Article ID 075107, 8 pages, 2012.
[93]  K. Walker and Z. Wang, “(3+1)-TQFTs and topological insulators,” Frontiers of Physics, vol. 7, no. 2, pp. 150–159, 2012.
[94]  X. G. Wen and Z. Wang, “Classification of symmetric polynomials of infinite variables: construction of Abelian and non-Abelian quantum Hall states,” Physical Review B, vol. 77, Article ID 235108, 21 pages, 2008.
[95]  X. G. Wen and Z. Wang, “Topological properties of Abelian and non-Abelian quantum Hall states classified using patterns of zeros,” Physical Review B, vol. 78, Article ID 155109, 27 pages, 2008.
[96]  N. Read, “Wavefunctions and counting formulas for quasiholes of clustered quantum Hall states on a sphere,” Physical Review B, vol. 73, no. 24, Article ID 245334, 8 pages, 2006.
[97]  S. H. Simon, E. H. Rezayi, and N. R. Cooper, “Pseudopotentials for multiparticle interactions in the quantum Hall regime,” Physical Review B, vol. 75, no. 19, Article ID 195306, 11 pages, 2007.
[98]  B. A. Bernevig and F. D. M. Haldane, “Model fractional quantum Hall states and Jack polynomials,” Physical Review Letters, vol. 100, no. 24, Article ID 246802, 4 pages, 2008.
[99]  B. A. Bernevig and F. D. M. Haldane, “Generalized clustering conditions of Jack polynomials at negative Jack parameter α,” Physical Review B, vol. 77, Article ID 184502, 10 pages, 2008.
[100]  M. Barkeshli and X. G. Wen, “Structure of quasiparticles and their fusion algebra in fractional quantum Hall states,” Physical Review B, vol. 79, Article ID 195132, 16 pages, 2009.
[101]  M. Barkeshli and X. G. Wen, “Classification of Abelian and non-Abelian multilayer fractional quantum Hall states through the pattern of zeros,” Physical Review B, vol. 82, Article ID 245301, 19 pages, 2010.
[102]  Y. M. Lu, X. G. Wen, Z. Wang, and Z. Wang, “Non-Abelian quantum Hall states and their quasiparticles: from the pattern of zeros to vertex algebra,” Physical Review B, vol. 81, Article ID 115124, 42 pages, 2010.
[103]  A. Seidel and D. H. Lee, “Abelian and non-Abelian Hall liquids and charge-density wave: quantum number fractionalization in one and two dimensions,” Physical Review Letters, vol. 97, Article ID 056804, 4 pages, 2006.
[104]  E. J. Bergholtz, J. Kailasvuori, E. Wikberg, T. H. Hansson, and A. Karlhede, “Pfaffian quantum Hall state made simple: multiple vacua and domain walls on a thin torus,” Physical Review B, vol. 74, no. 8, Article ID 081308, 2006.
[105]  A. Seidel and D. H. Lee, “Domain-wall-type defects as anyons in phase space,” Physical Review B, vol. 76, Article ID 155101, 12 pages, 2007.
[106]  A. Seidel, “Pfaffian statistics through adiabatic transport in the 1D coherent state representation,” Physical Review Letters, vol. 101, Article ID 196802, 4 pages, 2008.
[107]  A. Seidel and K. Yang, “Halperin (m,m′,n) Bilayer quantum Hall States on thin cylinders,” Physical Review Letters, no. 3, 4 pages, 2008.
[108]  E. Ardonne, E. J. Bergholtz, J. Kailasvuori, and E. Wikberg, “Degeneracy of non-Abelian quantum Hall states on the torus: domain walls and conformal field theory,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2008, no. 4, Article ID P04016, 2008.
[109]  A. Seidel, “S-Duality constraints on 1D patterns associated with fractional quantum Hall states,” Physical Review Letters, vol. 105, Article ID 026802, 4 pages, 2010.
[110]  J. Flavin and A. Seidel, “Abelian and non-Abelian statistics in the coherent state representation,” Physical Review X, vol. 1, no. 2, Article ID 021015, 37 pages, 2011.
[111]  E. Tang, J. W. Mei, and X. G. Wen, “High-temperature fractional quantum Hall states,” Physical Review Letters, vol. 106, Article ID 236802, 4 pages, 2011.
[112]  K. Sun, Z. C. Gu, H. Katsura, and S. D. Sarma, “Nearly flatbands with nontrivial topology,” Physical Review Letters, vol. 106, Article ID 236803, 4 pages, 2011.
[113]  T. Neupert, L. Santos, C. Chamon, and C. Mudry, “Fractional quantum Hall states at zero magnetic field,” Physical Review Letters, vol. 106, Article ID 236804, 4 pages, 2011.
[114]  D. N. Sheng, Z. C. Gu, K. Sun, and L. Sheng, “Fractional quantum Hall effect in the absence of Landau levels,” Nature Communications, vol. 2, article 389, 2011.
[115]  A. G. Grushin, T. Neupert, C. Chamon, and C. Mudry, “Enhancing the stability of a fractional Chern insulator against competing phases,” Physical Review B, vol. 86, Article ID 205125, 10 pages, 2012.
[116]  R. Willett, J. P. Eisenstein, H. L. Strormer, D. C. Tsui, A. C. Gossard, and J. H. English, “Observation of an even-denominator quantum number in the fractional quantum Hall effect Observation of an even-denominator quantum number in the fractional quantum Hall effect,” Physical Review Letters, vol. 59, pp. 1776–1779, 1987.
[117]  I. P. Radu, J. B. Miller, C. M. Marcus, M. A. Kastner, L. N. Pfeiffer, and K. W. West, “Quasi-particle properties from tunneling in the ν = 5/2 fractional quantum hall state,” Science, vol. 320, no. 5878, pp. 899–902, 2008.
[118]  P. Lecheminant, B. Bernu, C. Lhuillier, L. Pierre, and P. Sindzingre, “Order versus disorder in the quantum Heisenberg antiferromagnet on the kagomé lattice using exact spectra analysis,” Physical Review B, vol. 56, no. 5, pp. 2521–2529, 1997.
[119]  C. Waldtmann, H. U. Everts, B. Bernu et al., “First excitations of the spin 1/2 Heisenberg antiferromagnet on the kagomé lattice,” European Physical Journal B, vol. 2, no. 4, pp. 501–507, 1998.
[120]  P. W. Leung and V. Elser, “Numerical studies of a 36-site kagome antiferromagnet,” Physical Review B, vol. 47, no. 9, pp. 5459–5462, 1993.
[121]  H. C. Jiang, Z. Y. Weng, and D. N. Sheng, “Density matrix renormalization group numerical study of the kagome antiferromagnet,” Physical Review Letters, vol. 101, no. 11, Article ID 117203, 4 pages, 2008.
[122]  S. Yan, D. A. Huse, and S. R. White, “Spin-liquid ground state of the S = 1/2 Kagome Heisenberg antiferromagnet,” Science, vol. 332, no. 6034, pp. 1173–1176, 2011.
[123]  H. C. Jiang, H. Yao, and L. Balents, “Spin liquid ground state of the spin-1/2 square J1-J2 Heisenberg model,” Physical Review B, vol. 86, Article ID 024424, 14 pages, 2012.
[124]  L. Wang, Z. C. Gu, F. Verstraete, and X. G. Wen, “Spin-liquid phase in spin-1/2 square J1-J2 Heisenberg model: a tensor product state approach,” http://arxiv.org/abs/1112.3331.
[125]  H. C. Jiang, Z. Wang, and L. Balents, “Identifying topological order by entanglement entropy,” Nature Physics, vol. 8, pp. 902–905, 2012.
[126]  X. G. Wen, “Quantum orders and symmetric spin liquids,” Physical Review B, vol. 65, no. 16, Article ID 165113, 37 pages, 2002.
[127]  S. P. Kou, M. Levin, and X. G. Wen, “Mutual Chern-Simons theory for Z2 topological order,” Physical Review B, vol. 78, Article ID 155134, 13 pages, 2008.
[128]  S. P. Kou and X. G. Wen, “Translation-symmetry-protected topological orders in quantum spin systems,” Physical Review B, vol. 80, Article ID 224406, 11 pages, 2009.
[129]  Y. M. Lu and Y. Ran, “Z2 spin liquid and chiral antiferromagnetic phase in the Hubbard model on a honeycomb lattice,” Physical Review B, vol. 84, Article ID 024420, 15 pages, 2011.
[130]  J. S. Helton, K. Matan, M. P. Shores et al., “Spin dynamics of the spin-1/2 Kagome lattice antiferromagnet ZnCu3(OH)6Cl2,” Physical Review Letters, vol. 98, no. 10, Article ID 107204, 4 pages, 2007.
[131]  T. Imai, M. Fu, T. H. Han, and Y. S. Lee, “Local spin susceptibility of the S = 1/2 kagome lattice in ZnCu3(OH)6Cl2,” Physical Review B, vol. 84, Article ID 020411, 4 pages, 2011.
[132]  Y. M. Lu, Y. Ran, and P. A. Lee, “Z2 spin liquids in the S = 1/2 Heisenberg model on the kagome lattice: a projective symmetry-group study of Schwinger fermion mean-field states,” Physical Review B, vol. 83, no. 22, Article ID 224413, 11 pages, 2011.
[133]  M. B. Hastings, “Dirac structure, RVB, and Goldstone modes in the Kagomé antiferromagnet,” Physical Review B, vol. 63, no. 1, Article ID 14413, 16 pages, 2000.
[134]  Y. Ran, M. Hermele, P. A. Lee, and X. G. Wen, “Projected-wave-function study of the spin-1/2 Heisenberg model on the Kagomé Lattice,” Physical Review Letters, vol. 98, no. 11, Article ID 117205, 4 pages, 2007.
[135]  M. Hermele, Y. Ran, P. A. Lee, and X. G. Wen, “Properties of an algebraic spin liquid on the kagome lattice,” Physical Review B, vol. 77, no. 22, Article ID 224413, 23 pages, 2008.
[136]  Y. Ran, W. H. Ko, P. A. Lee, and X. G. Wen, “Spontaneous spin ordering of a dirac spin liquid in a magnetic field,” Physical Review Letters, vol. 102, no. 4, Article ID 047205, 4 pages, 2009.
[137]  W. H. Ko, P. A. Lee, and X. G. Wen, “Doped kagome system as exotic superconductor,” Physical Review B, vol. 79, Article ID 214502, 13 pages, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133