全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electronic Structure Calculation of Adsorbate Gas Molecules on an Armchair Graphene Nanoribbon

DOI: 10.5402/2012/368634

Full-Text   Cite this paper   Add to My Lib

Abstract:

By using the first-principle methods, we have investigated the adsorption of the CO, CO2, NO, and NH3 molecules on an armchair graphene nanoribbon (AGNR). The optimal adsorption positions and orientations of these molecules on AGNR are determined. The adsorption energies, the charge transfer, and the density of states (DOS) are obtained. The NO, CO, and CO2 adsorbed molecules act as an acceptor, and the NH3 adsorbed molecule acts as a donor. The NO and CO molecules contributed with localized states in the center of the original band gap. But the system exhibits -type or -type semiconductor after NH3 or CO2 adsorption. 1. Introduction Recently the study of the sensing property of carbon nanostructures, such as carbon nanotubes (CNTs), graphene, and graphene nanoribbons (GNRs), has attached a lot of research activity [1–3]. Studies show that the graphene and CNTs and GNRs are good gas sensors. Experimental data have shown that the transport properties of nanotube changes upon exposure to gas molecules such as the O2, NO2, and NH3 molecules [2, 4–8]. Experimental and theoretical studies of gas molecule adsorption on the graphene surface have been reported already [9–16] showing that H2O, NO, CO, NO2, and NH3 molecules are physically adsorbed on the graphene. The NH3, NO, and CO molecules act as donors while H2O and NO2 act as acceptors. The conductance of graphene at the Fermi level decreases with adsorbing NO2 molecules while it increases with adsorbing NO molecules [17]. Due to having flat structure and thus larger accessible surface area, GNRs and graphene may act better than any other carbon-based materials as gas sensors. GNRs’ electronic states largely depend on the edge structure (armchair or zigzag). Calculations based on tight bonding approximation predict that zigzag graphene nanoribbons (ZGNRs) are always metallic while armchair graphene nanoribbons (AGNRs) can be either metallic or semiconducting, depending on their width [18]. However DFT calculations show that AGNRs are semiconducting with a finite band gap and the value of the gap depends on their width [19–21]. Theoretical and ab initio studies of GNRs sensing properties have been reported already, showing that absorption of CO2 or O2 molecules changes the AGNR to -type semiconductor, while NH3 adsorption changes it to a -type semiconductor [22–24]. In this work we performed the first-principle calculations for the adsorption of CO, CO2, NO, and NH3 molecules on armchair graphene nanoribbon consisting of 6 dimer lines across the ribbon width (6-AGNR), as shown in Figure 1(a). After

References

[1]  J. Kong, N. R. Franklin, C. Zhou et al., “Nanotube molecular wires as chemical sensors,” Science, vol. 287, no. 5453, pp. 622–625, 2000.
[2]  P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, “Extreme oxygen sensitivity of electronic properties of carbon nanotubes,” Science, vol. 287, no. 5459, pp. 1801–1804, 2000.
[3]  P. Qi, O. Vermesh, M. Grecu et al., “Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection,” Nano Letters, vol. 3, no. 3, pp. 347–351, 2003.
[4]  S. Chopra, K. McGuire, N. Gothard, A. M. Rao, and A. Pham, “Selective gas detection using a carbon nanotube sensor,” Applied Physics Letters, vol. 83, no. 11, pp. 2280–2282, 2003.
[5]  L. Valentini, I. Armentano, J. M. Kenny, C. Cantalini, L. Lozzi, and S. Santucci, “Sensors for sub-ppm NO2 gas detection based on carbon nanotube thin films,” Applied Physics Letters, vol. 82, no. 6, pp. 961–963, 2003.
[6]  T. Ueda, M. M. H. Bhuiyana, H. Norimatsua, S. Katsukia, T. Ikegamia, and F. Mitsugi, “Development of carbon nanotube-based gas sensors for NOx gas detection working at low temperature,” Physica E, vol. 40, no. 7, pp. 2272–2277, 2008.
[7]  P. Qi, O. Vermesh, M. Grecu et al., “Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection,” Nano Letters, vol. 3, no. 3, pp. 347–351, 2003.
[8]  D. Zhang, Z. Liu, C. Li et al., “Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices,” Nano Letters, vol. 4, no. 10, pp. 1919–1924, 2004.
[9]  F. Schedin, A. K. Geim, S. V. Morozov et al., “Detection of individual gas molecules adsorbed on graphene,” Nature Materials, vol. 6, no. 9, pp. 652–655, 2007.
[10]  J. P. Novak, E. S. Snow, E. J. Houser, D. Park, J. L. Stepnowski, and R. A. McGill, “Nerve agent detection using networks of single-walled carbon nanotubes,” Applied Physics Letters, vol. 83, no. 19, pp. 4026–4028, 2003.
[11]  T. O. Wehling, K. S. Novoselov, S. V. Morozov et al., “Molecular doping of graphene,” Nano Letters, vol. 8, no. 1, pp. 173–177, 2008.
[12]  J. Dai, P. Giannozzi, and J. Yuan, “Adsorption of pairs of NOx molecules on single-walled carbon nanotubes and formation of NO?+?NO3 from NO2,” Surface Science, vol. 603, no. 21, pp. 3234–3238, 2009.
[13]  J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano, vol. 3, no. 2, pp. 301–306, 2009.
[14]  O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Physical Review B, vol. 77, no. 12, Article ID 125416, 6 pages, 2008.
[15]  R. M. Ribeiro, N. M. R. Peres, J. Continho, and P. R. Briddon, “Inducing energy gaps in monolayer and bilayer graphene: local density approximation calculations,” Physical Review B, vol. 78, no. 7, Article ID 075442, 7 pages, 1990.
[16]  Y. H. Zhang, Y. B. Chen, K. G. Zhou et al., “Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study,” Nanotechnology, vol. 20, no. 18, Article ID 185504, 2009.
[17]  K. Imani, M. R. Abolhassani, and A. A. Sabouri-Dodaran, “Electronic transport calculation of adsorbate NO2 and NO molecules on graphene using maximally localized wannier functions,” The European Physical Journal B, vol. 74, no. 1, pp. 135–138, 2010.
[18]  K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Edge state in graphene ribbons: nanometer size effect and edge shape dependence,” Physical Review B, vol. 54, no. 24, pp. 17954–17961, 1996.
[19]  V. Barone, O. Hod, and G. E. Scuseria, “Electronic structure and stability of semiconducting graphene nanoribbons,” Nano Letters, vol. 6, no. 12, pp. 2748–2754, 2006.
[20]  M. Y. Han, B. ?zyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Physical Review Letters, vol. 98, no. 20, Article ID 206805, 4 pages, 2007.
[21]  L. Tapasztó, G. Dobrik, P. Lambin, and L. P. Biró, “Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography,” Nature Nanotechnology, vol. 3, no. 7, pp. 397–401, 2008.
[22]  B. Huang, Z. Li, Z. Liu et al., “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor,” Journal of Physical Chemistry C, vol. 112, no. 35, pp. 13442–13446, 2008.
[23]  H. E. Romero, P. Joshi, A. K. Gupta et al., “Adsorption of ammonia on graphene,” Nanotechnology, vol. 20, no. 24, Article ID 245501, 2009.
[24]  A. Saffarzadeh, “Modeling of gas adsorption on graphene nanoribbons,” Journal of Applied Physics, vol. 107, no. 11, Article ID 114309, 7 pages, 2010.
[25]  P. Giannozzi, S. Baroni, N. Bonini, et al., “Quantum espresso: a modular and open-source software project for quantum simulations of materials,” Journal of Physics, vol. 21, no. 39, Article ID 395502, 2009.
[26]  D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Physical Review B, vol. 41, no. 11, pp. 7892–7895, 1990, The Pseudopotential generation.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133