We report measurements of X-ray powder diffraction, vibrational study, the differential scanning calorimetry (DSC), and the electric properties of a made-up [C6H9N2]2CuCl4 sample. The alternative current (ac) conductivity of the compound [C6H9N2]2CuCl4 has been measured in the temperature range 356–398?K and the frequency range 209?Hz–5?MHz. The Cole-Cole (the imaginer part ( ) versus real part ( ) of impedance complex) plots are well fitted to an equivalent circuit model which consists of a parallel combination of a bulk resistance ( ) and constant phase elements (CPE). The single semicircle indicates only one primary mechanism for the electrical conduction within [C6H9N2]2CuCl4. The variation of the value of these elements with temperatures confirmed the result detected by DSC and dielectric measurements. Thus the conduction in the material is probably due to a hopping or a small polaron tunneling process. 1. Introduction Organic-inorganic hybrid compounds can be designed to utilize synergistic interactions between the dissimilar components, which can yield new properties and/or an enhanced performance. Indeed, synergy will be critical in achieving targeted physical properties (e.g., electronic, optical and transport properties). Thus, organic-inorganic hybrid materials combine the advantageous properties characteristic of inorganic solids (e.g., high carrier mobilities, thermal stability) with those of organic molecules (e.g., ease of processing, high fluorescence efficiency, and large polarizability) [1–11]. A novel group of crystals, containing heteroaromatic cations like, pyridinium, substituted pyridinium, and imidazolium ones, have been recently synthesized and characterized [11–13]. Since aromatic heterocyclic cations are bestowed a significant electric dipole moment; thus some halogenoantimonates(III) and halogenobismuthates(III) containing these cations form strongly polar structures. Inorganic component can introduce some special structural units, such as distorted tetrahedron and octahedron. In an attempt to study the electric behavior in this class of compounds we have successfully synthesized a compound of formula bis(2-amino-4-methylpyridinium) tetrachloridocuprate(II) ([C6H9N2]2[CuCl4]). At room temperature, the synthesized compound crystallizes in the monoclinic system (C2/c space group) with and the following unit cell dimensions: (3) ?, (3) ?, (4) ?, and (17)° [11]. The crystal structure contains chains of cations alternating with stacks of tetrahedra anions of tetrachloridocuprate (Figure 1(a)). Both N–H?Cl and π-π stacking
References
[1]
I. Chaabane, F. Hlel, and K. Guidara, “Dielectric spectroscopy study of the new compound [C12H17N2]2CdCl4,” Ionics, vol. 16, no. 4, pp. 371–377, 2010.
[2]
I. Chaabane, F. Hlel, and K. Guidara, “Electrical study by impedance spectroscopy of the new compound [C12H17N2]2CdCl4,” Journal of Alloys and Compounds, vol. 461, no. 1-2, pp. 495–500, 2008.
[3]
I. Chaabane, F. Hlel, and K. Guidara, “Synthesis, Infra-red, Raman, NMR and structural characterization by X-ray Diffraction of [C12H17N2]2CdCl4 and [C6H10N2]2Cd3Cl10 compounds,” Journal of PMC Physics B, vol. 1, article 11, 2008.
[4]
A. K. Vishwakarma, P. S. Ghalsasi, A. Navamoney, Y. Lan, and A. K. Powell, “Structural phase transition and magnetic properties of layered organic-inorganic hybrid compounds: P-Haloanilinium tetrachlorocuparate(II),” Polyhedron, vol. 30, no. 9, pp. 1565–1570, 2011.
[5]
K. Shibuya, M. Koshimizu, Y. Takeoka, and K. Asai, “Scintillation properties of (C6H13NH3)2PbI4: exciton luminescence of an organic/inorganic multiple quantum well structure compound induced by 2.0 MeV protons,” Nuclear Instruments and Methods in Physics Research B, vol. 194, no. 2, pp. 207–212, 2002.
[6]
P. Ren, J. Qin, T. Liu, and S. Zhang, “Synthesis, structure and second harmonic generation of novel inorganic-organic hybrid, (p-cyano-1-hydrogenpyridinium)2CdI4,” Inorganic Chemistry Communications, vol. 7, no. 1, pp. 134–136, 2004.
[7]
Y. Liu, P. Yang, and J. Meng, “Synthesis, crystal structure and optical properties of a novel organic inorganic hybrid materials (C9H14N)2PbCl4,” Solid State Sciences, vol. 13, no. 5, pp. 1036–1040, 2011.
[8]
P. S. Ghalsasi and K. Inoue, “Distorted perovskite structured organic-inorganic hybrid compounds for possible multiferroic behavior: [n-alkyl]2FeCl4,” Polyhedron, vol. 28, no. 9-10, pp. 1864–1867, 2009.
[9]
N. Kitazawa, M. Aono, and Y. Watanabe, “Excitons in organic-inorganic hybrid compounds ( )2PbBr4 ( , 5, 7 and 12),” Thin Solid Films, vol. 518, no. 12, pp. 3199–3203, 2010.
[10]
T. J. Coffey, C. P. Landee, W. T. Robinson, M. M. Turnbull, M. Winn, and F. M. Woodward, “Transition metal halide salts of 2-amino-3-methylpyridine: Synthesis, crystal structures and magnetic properties of (3-MAP)2CuX4 [3-MAP = 2-amino-3-methylpyridinium; X = Cl, Br],” Inorganica Chimica Acta, vol. 303, no. 1, pp. 54–60, 2000.
[11]
R. H. Al-Far and B. F. Ali, “Bis(2, 6-dimethyl pyridinium) tetra bromido zincate(II),” Acta Crystallographica Section E, vol. 65, pp. 581–582, 2009.
[12]
A. K. Rai, R. Singh, K. N. Singh, and V. B. Singh, “FTIR, Raman spectra and ab initio calculations of 2-mercaptobenzothiazole,” Spectro Chimica Acta A, vol. 63, no. 2, pp. 483–490, 2006.
[13]
M. N. Ohnet, M. Jouan, G. Ménard et al., “Chemical bonding in metal-heterocumulene complexes. Part 3. Vibrational study of the cyanamide ligand NCNR2 and the complexes (CO)5MNCNR2 (M is Cr or W; R is C2H5 or CH3), and determination of the force field for the complex (CO)5CrNCN(C2H5)2,” Spectrochimica Acta A, vol. 52, no. 5, pp. 505–526, 1996.
[14]
L. A. Sheludyakova and T. V. Basova, “Hexachlorocuprate(II) anion: vibration spectra and structure,” Journal of Structural Chemistry, vol. 43, no. 1, pp. 581–586, 2002.
[15]
T. Guerfel and A. Jouini, “Crystal structure, thermal analysis, and IR spectroscopic investigation of bis(2-amino-6-methyl) pyridinium sulfate,” Journal of Chemical Crystallography, vol. 35, no. 7, pp. 513–521, 2005.
[16]
A. Oueslati, F. Hlel, and M. Gargouri, “Preparation and characterization of organic inorganic hybrid compound [N(C4H9)4]2Cu2Cl6,” Ionics, vol. 10, p. 11581, 2010.
[17]
K. S. Rao, P. M. Krishna, D. M. Prasad, J. H. Lee, and J. S. Kim, “Electrical, electromechanical and structural studies of lead potassium samarium niobate ceramics,” Journal of Alloys and Compounds, vol. 464, no. 1-2, pp. 497–507, 2008.
[18]
J. C. M'Peko, D. L. Spavieri, and M. F. de Souza, “In situ characterization of the grain and grain-boundary electrical responses of zirconia ceramics under uniaxial compressive stresses,” Applied Physics Letters, vol. 81, no. 18, pp. 2827–2832, 2002.
[19]
A. Huanosta, O. A. Fregoso, E. Amano, C. T. Mu?oz, M. E. M. Alvarez, and J. G. M. Alvarez, “ac impedance analysis on crystalline layered and polycrystalline bismuth titanate,” Journal of Applied Physics, vol. 69, no. 1, pp. 404–408, 1991.
[20]
H. Ye, C. Q. Sun, H. Huang, and P. Hing, “Dielectric transition of nanostructured diamond films,” Applied Physics Letters, vol. 78, no. 13, pp. 1826–1828, 2001.
[21]
R. M. Hill and A. K. Jonscher, “DC and AC conductivity in hopping electronic systems,” Journal of Non-Crystalline Solids, vol. 32, no. 1-3, pp. 53–69, 1979.
[22]
N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, UK, 2nd edition, 1979.
[23]
R. H. Chen, R. Y. Chang, and S. C. Shern, “Dielectric and AC ionic conductivity investigations in K3H(SeO4)2 single crystal,” Journal of Physics and Chemistry of Solids, vol. 63, no. 11, pp. 2069–2077, 2002.
[24]
A. Oueslati, F. Hlel, K. Guidara, and M. Gargouri, “AC conductivity analysis and dielectric relaxation behavior of [N(C3H7)4]2Cu2Cl6,” Journal of Alloys and Compounds, vol. 492, no. 1-2, pp. 508–514, 2010.
[25]
A. R. Long, “Frequency-dependent loss in amorphous semiconductors,” Advances in Physics, vol. 31, pp. 553–637, 1982.
[26]
S. R. Elliott, “A. c. Conduction in amorphous chalcogenide and pnictide semiconductors,” Advances in Physics, vol. 36, no. 2, pp. 135–218, 1987.