Cystathionine β-Lyase-Like Protein with Pyridoxal Binding Domain Characterized in Leishmania major by Comparative Sequence Analysis and Homology Modelling
Cystathionine β-lyase-like protein (CBLP), one of the key enzymes involved in methionine biosynthesis utilising pyridoxal phosphate (PLP) as a cofactor, has recently been reported in Leishmania major. Its presence in the parasite and absence in humans warrant its full characterisation and fruition as a potent, selective, and inevitable druggable target. Due to the unavailability of X-ray 3D structure of CBLP, a homology model for this protein was developed for the first time. The model was evaluated for PLP binding site and various conserve domain residues of the protein recommended by comparative sequence analyses by different protein analysis tools. The model was validated and discovered to be robust and statistically significant. The final model was superimposed on template of Arabidopsis thaliana (PDB ID: 1IBJ) and RMSD was found to be 0.486. The PLP binding site residues of both the proteins were ensued to be highly conserved indicated by Gly71, Met72, Tyr95, Asp169, and Ser193 as well as formation of aldimine bond with Lys194. This was further verified through molecular simulation of PLP into the cofactor binding site of the modelled protein. The present study may therefore play a directing role in the designing of novel, potential, and selective antileishmanial agents. 1. Introduction Cystathionine β-lyase (CBL, EC 4.4.1.8) found in plants and microbes is a pyridoxal-5′-phosphate (PLP)-dependent homotetrameric enzyme of approximately 35–40?kDa and catalyses the penultimate step of methionine biosynthesis, that is, α, β-elimination reaction, where cystathionine is hydrolysed into pyruvate, ammonia, and homocysteine (Figure 1) [1, 2]. Subsequently, homocysteine gets methylated to methionine. The overexpression of CBL encoding metC gene in D-alanine gene knockout models of several bacteria was found to be significant for their sustenance in host cell environment [3]. In addition, CBL also dictated the virulence of Salmonella enterica [4] thus playing a decisive role in its pathogenicity. Although, in 2007, Ejim et al. explored CBL as a drug target in bacteria [5], its role in protozoan is yet to be delved into. Figure 1: Metabolism of cystathionine by cystathionine β-lyase. Recently, the decoding of the Leishmania genome [6, 7] facilitated in extracting significant information regarding the presence of a new homolog of CBL, cystathionine β-lyase-like protein (CBLP), a 50?kDa translated peptide of 459 amino acids which shares 48.05% structural resemblance with CBL of Arabidopsis thaliana. This information also revealed that 64–447 amino acids make up
References
[1]
R. Singh, F. Spyrakis, P. Cozzini, et al., “Chemogenomics of pyridoxal -phosphate dependent enzymes,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 28, no. 1, pp. 183–194, 2013.
[2]
A. L. Manders, A. F. Jaworski, M. Ahmed, and S. M. Aitken, “Exploration of structure-function relationships in Escherichia coli cystathionine γ-synthase and cystathionine β-lyase via chimeric constructs and site-spectific substitutions,” Biochimica et Biophysica Acta, 2013.
[3]
L. Kang, A. C. Shaw, D. Xu et al., “Upregulation of MetC is essential for D-alanine-independent growth of an alr/dadX-deficient Escherichia coli strain,” Journal of Bacteriology, vol. 193, no. 5, pp. 1098–1106, 2011.
[4]
L. J. Ejim, V. M. D'Costa, N. H. Elowe, J. C. Loredo-Osti, D. Malo, and G. D. Wright, “Cystathionine β-lyase is important for virulence of Salmonella enterica serovar typhimurium,” Infection and Immunity, vol. 72, no. 6, pp. 3310–3314, 2004.
[5]
L. J. Ejim, J. E. Blanchard, K. P. Koteva et al., “Inhibitors of bacterial cystathionine β-lyase: leads for new antimicrobial agents and probes of enzyme structure and function,” Journal of Medicinal Chemistry, vol. 50, no. 4, pp. 755–764, 2007.
[6]
K. Leifso, G. Cohen-Freue, N. Dogra, A. Murray, and W. R. McMaster, “Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed,” Molecular and Biochemical Parasitology, vol. 152, no. 1, pp. 35–46, 2007.
[7]
C. S. Peacock, K. Seeger, D. Harris et al., “Comparative genomic analysis of three Leishmania species that cause diverse human disease,” Nature Genetics, vol. 39, no. 7, pp. 839–847, 2007.
A. Read, I. Hurwitz, and R. Durvasula, “Leishmaniasis: an update on a neglected tropical disease,” Dynamic Models of Infectious Diseases, pp. 95–138, 2013.
[10]
C. Paz, S. Samake, J. M. Anderson, et al., “Leishmania major, the predominant Leishmania species responsible for cutaneous Leishmaniasis in Mali,” The American Journal of Tropical Medicine and Hygiene, vol. 88, no. 3, pp. 583–585, 2013.
[11]
A. O. d. Santos, E. Izumi, T. Ueda-Nakamura, et al., “Antileishmanial activity of diterpene acids in copaiba oil,” Memórias do Instituto Oswaldo Cruz, vol. 108, no. 1, pp. 59–64, 2013.
[12]
P. M. Loiseau and G. Barratt, “Drug targets, drug effectors, and drug targeting and delivery,” in Drug Resistance in Leishmania Parasites, pp. 321–350, Springer, 2013.
[13]
S. Sundar and J. Chakravarty, “Leishmaniasis: an update of current pharmacotherapy,” Expert Opinion on Pharmacotherapy, vol. 14, pp. 53–63, 2013.
[14]
A. Ponte-Sucre, “Introduction: Leishmaniasis—the biology of a parasite,” in Drug Resistance in Leishmania Parasites, pp. 1–12, Springer, 2013.
[15]
W. R. Pearson, “Effective protein sequence comparison,” Methods in Enzymology, vol. 266, pp. 227–256, 1996.
[16]
S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for similarities in the amino acid sequence of two proteins,” Journal of Molecular Biology, vol. 48, no. 3, pp. 443–453, 1970.
[17]
H. M. Berman, J. Westbrook, Z. Feng et al., “The protein data bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235–242, 2000.
[18]
T. Fechteler, U. Dengler, and D. Schomburg, “Prediction of protein three-dimensional structures in insertion and deletion regions: a procedure for searching data bases of representative protein fragments using geometric scoring criteria,” Journal of Molecular Biology, vol. 253, no. 1, pp. 114–131, 1995.
[19]
J. Wang, P. Cieplak, and P. A. Kollman, “How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?” Journal of Computational Chemistry, vol. 21, no. 12, pp. 1049–1074, 2000.
[20]
I. G. Tironi, R. Sperb, P. E. Smith, and W. F. Van Gunsteren, “A generalized reaction field method for molecular dynamics simulations,” The Journal of Chemical Physics, vol. 102, no. 13, pp. 5451–5459, 1995.
[21]
P. Labute, “The generalized born/volume integral implicit solvent model: estimation of the free energy of hydration using London dispersion instead of atomic surface area,” Journal of Computational Chemistry, vol. 29, no. 10, pp. 1693–1698, 2008.
[22]
C. Zhang, G. Vasmatzis, J. L. Cornette, and C. DeLisi, “Determination of atomic desolvation energies from the structures of crystallized proteins,” Journal of Molecular Biology, vol. 267, no. 3, pp. 707–726, 1997.
[23]
S. Miyazawa and R. L. Jernigan, “Estimation of effective interresidue contact energies from protein crystal structures: quasi-chemical approximation,” Macromolecules, vol. 18, no. 3, pp. 534–552, 1985.
[24]
G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, “Stereochemistry of polypeptide chain configurations,” Journal of molecular biology, vol. 7, pp. 95–99, 1963.
[25]
R. A. Laskowski, M. W. MacArthur, D. S. Moss, and J. M. Thornton, “PROCHECK: a program to check the stereochemical quality of protein structures,” Journal of Applied Crystallography, vol. 26, no. 2, pp. 283–291, 1993.
[26]
C. Colovos and T. O. Yeates, “Verification of protein structures: patterns of nonbonded atomic interactions,” Protein Science, vol. 2, no. 9, pp. 1511–1519, 1993.
[27]
D. Eisenberg, R. Lüthy, and J. U. Bowie, “VERIFY3D: assessment of protein models with three-dimensional profiles,” Methods in Enzymology, vol. 277, pp. 396–406, 1997.
[28]
M. Wiederstein and M. J. Sippl, “ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins,” Nucleic acids research, vol. 35, pp. W407–410, 2007.
[29]
M. J. Sippl, “Recognition of errors in three-dimensional structures of proteins,” Proteins, vol. 17, no. 4, pp. 355–362, 1993.
[30]
A. Marchler-Bauer, J. B. Anderson, P. F. Cherukuri et al., “CDD: a conserved domain database for protein classification,” Nucleic Acids Research, vol. 33, pp. D192–D196, 2005.
[31]
A. Marchler-Bauer, J. B. Anderson, M. K. Derbyshire et al., “CDD: a conserved domain database for interactive domain family analysis,” Nucleic Acids Research, vol. 35, no. 1, pp. D237–D240, 2007.
[32]
T. A. Halgren, “Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94,” Journal of Computational Chemistry, vol. 17, no. 5-6, pp. 490–519, 1996.
[33]
“Measuring proteins and voids in proteins.,” in Proceedings of the 28th Hawaii International Conference on System Sciences, H. Edelsbrunner, M. Facello, P. Fu, and J. Liang, Eds., vol. 5, IEEE, 1995.