全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Zebra Finch Glucokinase Containing Two Homologous Halves Is an In Silico Chimera

DOI: 10.1155/2013/790240

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chimerical nature of the gene annotated as Zebra finch (Taeniopygia guttata) glucokinase (hexokinase IV) has been proved in this study. N-half of the protein encoded by that gene shows similarity with glucokinase from other vertebrates, while its C-half shows similarity with C-halves of hexokinases II. We mapped 7 new exons coding for N-half of hexokinase II and 4 new exons coding for glucokinase of Zebra finch. Finally, we reconstructed normal genes coding for Zebra finch glucokinase and hexokinase II which are situated in “head-to-tail” orientation on the chromosome 22. Because of the error in gene annotation, exons encoding N-half of normal glucokinase have been fused with exons encoding C-half of normal hexokinase II, even though they are separated from each other by the sequence 98066 nucleotides in length. 1. Introduction Methods of phylogenetic analysis are usually used for reconstruction of the relations between distinct species or between families of homologous proteins. Nucleotide sequences of homologous genes are used as a material for fundamental works in computational biology and phylogenetic. In this study, the situation is quite different. Methods of phylogenetic analysis and methods of computational biology helped to find an error in gene annotation. The volume of nucleotide sequences including those of complete prokaryotic and eukaryotic genomes is increasing in geometric progression in the last decade. There are many different automatic gene finding algorithms developed to annotate those sequences. Even though most of the annotations are correct, there are still some mistakes which may lead to wrong conclusions. The material from public databases should not be taken as something absolutely correct. In case if something is wrong with phylogenetic trees one should carefully recheck all the nucleotide sequences used. There are five types of hexokinase encoded by five different genes in genomes of vertebrates: hexokinase I (HKI); hexokinase II (HKII), hexokinase III (HKIII), hexokinase domain containing protein I (HKDCI), and glucokinase (GK) [1]. HKI, HKII, HKIII, and HKDCI consist of two homologous halves. GK, which is often referred to as hexokinase IV, contains only a single “half” of hexokinase. It was shown that N-halves of HKI and HKIII are not catalytically active, unlike their C-halves [2]. In contrast, both halves of HKII are able to catalyze phosphorylation of hexoses [3]. Phylogenetic relations between glucokinase and two halves of hexokinase have been studied previously with the aim to reconstruct evolutionary history of the

References

[1]  D. M. Irwin and H. Tan, “Molecular evolution of the vertebrate hexokinase gene family: identification of a conserved fifth vertebrate hexokinase gene,” Comparative Biochemistry and Physiology D, vol. 3, no. 1, pp. 96–107, 2008.
[2]  H. J. Tsai, “Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves of type I and type III isozymes,” Archives of Biochemistry and Biophysics, vol. 369, no. 1, pp. 149–156, 1999.
[3]  K. J. Ahn, J. Kim, M. Yun, J. H. Park, and J. D. Lee, “Enzymatic properties of the N-and C-terminal halves of human hexokinase II,” BMB Reports, vol. 42, no. 6, pp. 350–355, 2009.
[4]  M. L. Cárdenas, A. Cornish-Bowden, and T. Ureta, “Evolution and regulatory role of the hexokinases,” Biochimica et Biophysica Acta, vol. 1401, no. 3, pp. 242–264, 1998.
[5]  V. V. Khrustalev, M. Arjomandzadegan, E. V. Barkovsky, and L. P. Titov, “Low rates of synonymous mutations in sequences of mycobacterium tuberculosis GyrA and KatG genes,” Tuberculosis, vol. 92, no. 4, pp. 333–344, 2012.
[6]  P. Flicek, M. R. Amode, and K. Beal, “Ensembl 2012,” Nucleic Acids Research, vol. 40, pp. D84–D90, 2012.
[7]  R. A. George and J. Heringa, “The REPRO server: finding protein internal sequence repeats through the web,” Trends in Biochemical Sciences, vol. 25, no. 10, pp. 515–517, 2000.
[8]  K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011.
[9]  D. T. Jones, W. R. Taylor, and J. M. Thornton, “The rapid generation of mutation data matrices from protein sequences,” Computer Applications in the Biosciences, vol. 8, no. 3, pp. 275–282, 1992.
[10]  M. Nei and S. Kumar, Molecular Evolution and Phylogenetics, Oxford University Press, New York, NY, USA, 2000.
[11]  N. Sueoka, “Directional mutation pressure and neutral molecular evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 8, pp. 2653–2657, 1988.
[12]  O. K. Clay and G. Bernardi, “GC3 of genes can be used as a proxy for isochore base composition: a reply to Elhaik et al,” Molecular Biology and Evolution, vol. 28, no. 1, pp. 21–23, 2011.
[13]  V. V. Khrustalev and E. V. Barkovsky, “An in-silico study of alphaherpesviruses ICP0 genes: positive selection or strong mutational GC-pressure?” IUBMB Life, vol. 60, no. 7, pp. 456–460, 2008.
[14]  M. Costantini and G. Bernardi, “Replication timing, chromosomal bands, and isochores,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3433–3437, 2008.
[15]  S. V. Lelevich, V. V. Khrustalev, E. V. Barkovsky, and T. A. Shedogubova, “The influence of ethanol on pyruvate kinases activity in vivo, in vitro, in silico,” American Journal of Medical and Biological Research, vol. 1, pp. 6–15, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133