全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Interference Mitigation through Successive Cancellation in Heterogeneous Networks

DOI: 10.1155/2013/146024

Full-Text   Cite this paper   Add to My Lib

Abstract:

We present a practical interference management scheme for heterogeneous networks (HetNets). The underlying ideas are based on (i) Han-Kobayashi-type message splitting (MS) where the receivers decode and cancel “part” of the interference which is accordingly optimized by the transmitters to ensure decoding and (ii) opportunistic interference cancellation (OIC) where the interfering transmitters act independently of the receivers that employ interference cancellation. We develop a novel transmission and reception scheme, called joint MS and OIC (MS-OIC), that engages both MS and OIC to account for a practical HetNet system with multiple macrocells and femtocells. The MS component includes a precoder design that judiciously maximizes the weighted sum throughput via the enabling of interference cancellation. A system design along with a novel scheduler that facilitates MS-OIC in a general HetNet system is also developed. System level simulations for a general HetNet system are presented, and the proposed MS-OIC scheme is compared with benchmark schemes such as Coordinated Beamforming (CBF) and joint CBF and Almost Blank Subframes (CBF-ABS). It is observed that the proposed MS-OIC scheme improves the macrocell throughput substantially, balances the achievable rates between the macrocell and femtocell users, and provides significant outage performance improvement in the system. 1. Introduction The steady march of Moore’s law has brought an ever-increasing level of processing power not only to desktop and laptop computers but also to mobile devices. The users of these devices have come to expect broadband performance from their cellular networks to match their device capabilities, and for the most part, network capacity has grown commensurately. The resultant explosive growth in network capacity has been consistent with Cooper’s Law [1] which observes that network capacity (e.g., total data delivery per month) has been doubling every 30 months since the days of Marconi and is predicted to continue for the foreseeable future. A breakdown of Cooper’s law [1] reveals that the vast majority of network capacity comes from denser deployments, specifically, adding more cells. The practicality of this approach for macro deployments is now becoming questionable. Operators wish to make the most of their existing grid of macro sites and are looking towards pico- and femtocells to address increased data demand, particularly in hotspot regions. The resulting mix of macro/femtocells, called a heterogeneous network (HetNet), can in principle provide cost-effective data

References

[1]  M. Cooper, “Cooper's Law,” Arraycomm, http://www.arraycomm.com/technology/coopers-law.
[2]  3GPP TR 36.814 v9.0.0, “Further advancements for E-UTRA physical layer aspects (Release 9),” March 2010.
[3]  D. Lopez-Perez, X. Chu, and I. Guvenc, “On the expanded region of picocells in heterogeneous networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 6, no. 3, pp. 281–294, 2012.
[4]  S. Rangan, “Femto-macro cellular interference control with subband scheduling and interference cancelation,” in Proceedings of IEEE Globecom Worshop on Femtocell Networks, December 2010.
[5]  T. S. Han and K. Kobayashi, “A new achievable rate region for the interference channel,” IEEE Transactions on Information Theory, vol. 27, no. 1, pp. 49–60, 1981.
[6]  A. B. Carleial, “Interference channels,” IEEE Transactions on Information Theory, vol. 24, no. 1, pp. 60–70, 1978.
[7]  C. Suh and D. N. C. Tse, “Feedback capacity of the gaussian interference channel to within 2 bits,” IEEE Transactions on Information Theory, vol. 57, no. 5, pp. 2667–2685, 2011.
[8]  E. A. Jorswieck and E. G. Larsson, “Monotonic optimization framework for the two-user MISO interference channel,” IEEE Transactions on Communications, vol. 58, no. 7, pp. 2159–2168, 2010.
[9]  X. Shang, B. Chen, G. Kramer, and H. V. Poor, “Capacity regions and sum-rate capacities of vector Gaussian interference channels,” IEEE Transactions on Information Theory, vol. 56, no. 10, pp. 5030–5044, 2010.
[10]  D. López-Pérez, I. Güven?, G. D. L. Roche, M. Kountouris, T. Q. S. Quek, and J. Zhang, “Enhanced intercell interference coordination challenges in heterogeneous networks,” IEEE Wireless Communications, vol. 18, no. 3, pp. 22–30, 2011.
[11]  A. Damnjanovic, J. Montojo, J. Cho, H. Ji, J. Yang, and P. Zong, “UE's role in LTE advanced heterogeneous networks,” IEEE Communications Magazine, vol. 50, no. 2, pp. 164–176, 2012.
[12]  3GPP TR 36.921, “FDD Home eNB (HeNB) Radio Frequency (RF) requirement analysis (Release 9),” March 2010.
[13]  “Interference management in OFDMA Femtocells,” Femto Forum whitepaper, March 2010.
[14]  M. M. Wang and T. Ji, “Dynamic resource allocation for interference management in orthogonal frequency division multiple access cellular communications,” IET Communications, vol. 4, no. 6, pp. 675–682, 2010.
[15]  P. Wang, C. Liu, and R. Mathar, “Dynamic fractional frequency reused proportional fair in time and frequency scheduling in OFDMA networks,” in Proceedings of 8th International Symposium on Wireless Communication Systems (ISWCS '11), pp. 745–749, November 2011.
[16]  3GPP TR 25.967, “Home Node B Radio Frequency (RF) Requirements (FDD) (Release 9),” May 2009.
[17]  Z. Lu, Y. Sun, X. Wen, T. Su, and D. Ling, “An energy-efficient power control algorithm in femtocell networks,” in Proceedings of 7th International Conference on Computer Science & Education (ICCSE '12), pp. 395–400, July 2012.
[18]  A. Barbieri, A. Damnjanovic, T. Ji et al., “LTE femtocells: system design and performance analysis,” IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 586–594, 2012.
[19]  M. K. Karakayali, G. J. Foschini, and R. A. Valenzuela, “Network coordination for spectrally efficient communications in cellular systems,” IEEE Wireless Communications, vol. 13, no. 4, pp. 56–61, 2006.
[20]  R. Irmer, H. Droste, P. Marsch et al., “Coordinated multipoint: concepts, performance, and field trial results,” IEEE Communications Magazine, vol. 49, no. 2, pp. 102–111, 2011.
[21]  D. Lee, H. Seo, B. Clerckx et al., “Coordinated multipoint transmission and reception in LTE-advanced: deployment scenarios and operational challenges,” IEEE Communications Magazine, vol. 50, no. 2, pp. 148–155, 2012.
[22]  J. Lee, Y. Kim, H. Lee et al., “Coordinated multipoint transmission and reception in LTE-advanced systems,” IEEE Communications Magazine, vol. 50, no. 11, pp. 44–50, 2012.
[23]  K. S. Gomadam, V. R. Cadambe, and S. A. Jafar, “A distributed numerical approach to interference alignment and applications to wireless interference networks,” IEEE Transactions on Information Theory, vol. 57, no. 6, pp. 3309–3322, 2011.
[24]  A. Adhikary, V. Ntranos, and G. Caire, “Cognitive femtocells: breaking the spatial reuse barrier of cellular systems,” in Proceedings of the Information Theory and Applications Workshop (ITA '11), pp. 56–65, February 2011.
[25]  H. Dahrouj and W. Yu, “Multicell interference mitigation with joint beamforming and common message decoding,” IEEE Transactions on Communications, vol. 59, no. 8, pp. 2264–2273, 2011.
[26]  R1-084482, “Low-Complexity Precoding for LTE-A Collaborative MIMO: A Signal Leakage Approach,” Mitsubishi Electric, 3GPP TSG RAN1 Meeting #55, November 2008.
[27]  R1-093411, “MU/CoMP Performance Comparison of Several Feedback Types,” Motorola, 3GPP TSG RAN1 Meeting #58, August 2009.
[28]  R1-104661, “Comparison of Time-domain eICIC Solutions,” LG Electronics, 3GPP TSG RAN1 Meeting #62, August 2010.
[29]  X. Shang, B. Chen, and M. J. Gans, “On the achievable sum rate for MIMO interference channels,” IEEE Transactions on Information Theory, vol. 52, no. 9, pp. 4313–4320, 2006.
[30]  M. Sadek, A. Tarighat, and A. H. Sayed, “A leakage-based precoding scheme for downlink multi-user MIMO channels,” IEEE Transactions on Wireless Communications, vol. 6, no. 5, pp. 1711–1721, 2007.
[31]  R3-111897, “X2 mobility between Macro and closed/hybrid HeNB,” CATT, 3GPP TSG RAN WG3 Meeting #73, August 2011.
[32]  R3-112079, “Scenario for mobility enhancement between HeNB and eNB,” Samsung, 3GPP TSG RAN WG3 Meeting #73, August 2011.
[33]  R3-112052, “Rel-11 HeNB Enhanced Mobility Scenarios,” Ericsson, 3GPP TSG RAN WG3 Meeting #73, August 2011.
[34]  “Wireless in the home & office: the need for both 3G Femtocells and Wi-Fi access points,” Femto Forum, January 2010.
[35]  “IEEE 802.16m Evaluation Methodology Document (EMD),” IEEE 802.16 Broadband Wireless Access Working Group.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133