This paper presents several applications of multiobjective optimization to antenna design, emphasizing the main general steps in this process. Specifications of antennas usually involve many conflicting objectives related to directivity, impedance matching, cross-polarization, and frequency range. These requirements induce multiobjective problems, which are formulated, solved, and analyzed here for three distinct antenna designs: a bowtie antenna for ground-penetrating radars, a reflector antenna for satellite broadcast systems, and a meander-line antenna for radio-frequency identification tags. Both stochastic and deterministic methods are considered in the analysis. 1. Introduction Antenna optimization aims at creating advanced and complex electromagnetic devices that must be competitive in terms of performance, serviceability, and cost effectiveness. This process involves selection of appropriate objective functions (usually conflicting), design variables, parameters, and constraints. In most antenna optimization problems, several goals must be satisfied simultaneously in order to obtain an optimal solution. As these objectives are often conflicting, no single solution may exist that is best regarding all considered goals. In many situations, antenna optimization can be viewed as a multidisciplinary engineered problem. However, most of the problems can be divided into search for optimal solutions and approximate solution of Maxwell’s equations using numerical methods. Important features regarding antenna optimization have to be considered: the objective function might have several local minima and its evaluation can be expensive. Of course, trying to find the global minimum can be prohibitive; therefore, using a suitable method for the given problem is fundamental for a proper engineering solution. For instance, some problems have well-established engineering solutions that were achieved after several years of tests and experiments. In such a situation, it may be desired to find a novel design which improves the known standard result, even though it may not be a global minimum. When the gradient or at least one subgradient is known, there are a couple of deterministic methods which can guarantee improvement (if an improved solution exists) of a given result [1]. Nevertheless, conditions where deterministic methods work well may not be achieved and, thus, stochastic methods may become a good alternative. In fact, stochastic methods such as genetic algorithms, particle swarm optimization, and immune systems are known to be very robust and capable of
References
[1]
A. C. Lisboa, D. A. G. Vieira, J. A. Vasconcelos, R. R. Saldanha, and R. H. C. Takahashi, “Multiobjective shape optimization of broad-band reflector antennas using the cone of efficient directions algorithm,” IEEE Transactions on Magnetics, vol. 42, no. 4, pp. 1223–1226, 2006.
[2]
K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, New York, NY, USA, 2002.
[3]
X. L. Travassos, N. Ida, C. Vollaire, and A. Nicolas, “Solution of Maxwell's equations for the simulation and optimization of the radar assessment of concrete structures,” Research in Nondestructive Evaluation, vol. 18, no. 3, pp. 151–161, 2007.
[4]
X. L. Travassos, Modélisation numérique pour l'évaluation non destructive électromagnétique: application au contr?le non destructif des structures en béton, Ph.D. thesis, L'école Centrale de Lyon, Ecully, France, June 2007.
[5]
D.-W. Duan and Y. Rahmat-Samii, “Generalized diffraction synthesis technique for high performance reflector antennas,” IEEE Transactions on Antennas and Propagation, vol. 43, no. 1, pp. 27–40, 1995.
[6]
A. C. Lisboa, D. A. G. Vieira, J. A. Vansconcelos, R. R. Saldanha, and R. H. C. Takahashi, “Decreasing interference in satellite broadband communication systems using modeled reflector antennas,” IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 958–961, 2008.
[7]
C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.
[8]
S. Polniak, “The RFID case study book: RFID application stories from around the globe,” Tech. Rep., Abhisam Software, 2007.
[9]
P. Harrop, “Printed RFID in 2010,” IDTechEx, 2010.
[10]
Z. N. Chen, Antennas for Portable Devices, John Wiley & Sons, 2007.
[11]
D. M. Dobkin, The RF in RFID: Passive UHF RFID in Practice, Elsevier, 2008.
[12]
N. A. Mohammed, M. Sivakumar, and D. D. Deavours, “An RFID tag capable of free-space and on-metal operation,” type, Information and Telecommunications Technology Center, 2008.
[13]
J. Y. Park and J. M. Woo, “Miniaturised dual-band S-shaped RFID tag antenna mountable on metallic surface,” Electronics Letters, vol. 44, no. 23, pp. 1339–1341, 2008.
[14]
J. D. Griffin and G. D. Durgin, “Radio link budgets for 915MHz RFID antennas placed on various objetcs,” in Texas Wireless Symposium, vol. 44, Atlanta, Ga, USA, 2005.
[15]
K. V. S. Rao, P. V. Nikitin, and S. F. Lam, “Antenna design for UHF RFID tags: a review and a practical application,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 12, pp. 3870–3876, 2005.
[16]
G. Marrocco, A. Fonte, and F. Bardati, “Evolutionary design of miniaturized meander-line antennas for RFID applications,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, pp. 362–365, June 2002.
[17]
G. Marrocco, “Gain-optimized self-resonant meander line antennas for RFID applications,” IEEE Antennas and Wireless Propagation Letters, vol. 2, pp. 302–305, 2003.
[18]
X. Qing, C. K. Goh, and Z. N. Chen, “Impedance characterization of rfid tag antennas and application in tag co-design,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 5, pp. 1268–1274, 2009.
[19]
X. L. Travassos, D. A. G. Vieira, A. C. Lisboa, M. M. B. Lima, and N. Ida, “Antenna optimization using multi-objective algorithms,” in Proceedings of the 4th European Conference on Antennas and Propagation (EuCAP '10), April 2010.
[20]
D. Zhou, R. A. Abd-Alhameed, and C. H. See, “Meanderline antenna design for UHF RFID tag using a genetic algorithm,” in Proceedings of the Progress in Eletromagnetics Research Symposium, pp. 1253–1257, March 2009.
[21]
D. A. G. Vieira, R. H. C. Takahashi, and R. R. Saldanha, “Multicriteria optimization with a multiobjective golden section line search,” Mathematical Programming, vol. 131, no. 1-2, pp. 131–161, 2012.