全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Transmission Power Self-Optimization Technique for Wireless Sensor Networks

DOI: 10.5402/2012/720286

Full-Text   Cite this paper   Add to My Lib

Abstract:

Wireless sensor networks (WSNs) are generally used to monitor hazardous events in inaccessible areas. Thus, on one hand, it is preferable to assure the adoption of the minimum transmission power in order to extend as much as possible the WSNs lifetime. On the other hand, it is crucial to guarantee that the transmitted data is correctly received by the other nodes. Thus, trading off power optimization and reliability insurance has become one of the most important concerns when dealing with modern systems based on WSN. In this context, we present a transmission power self-optimization (TPSO) technique for WSNs. The TPSO technique consists of an algorithm able to guarantee the connectivity as well as an equally high quality of service (QoS), concentrating on the WSNs efficiency (Ef), while optimizing the transmission power necessary for data communication. Thus, the main idea behind the proposed approach is to trade off WSNs Ef against energy consumption in an environment with inherent noise. Experimental results with different types of noise and electromagnetic interference (EMI) have been explored in order to demonstrate the effectiveness of the TPSO technique. 1. Introduction Recent advancements in wireless communication and electronic technology have made possible the development of small, low-cost, low-power, and multifunctional sensor nodes [1, 2]. Wireless sensor networks (WSNs) are composed of communication nodes, which contain sensing, data processing, and communication components as well as power supply, typically a battery. In more detail, these nodes are able to collect different types of data and to communicate with each other. Nowadays, WSNs have been increasingly deployed for both civil and military applications which typically work in harsh environments. Considering sensor nodes, resources like processor, memory, and battery are generally restricted, since their replacement is considered prohibitive due to the hazardous and inaccessible places where they are supposed to operate [3]. In this scenario, where nodes are likely to operate on limited battery life, power conservation can be considered one of the most important issues [4]. Transmitting at unnecessary high power not only reduces the lifetime of the WSNs nodes but also introduces excessive interference. Thus, transmitting at the lowest possible power while preserving the network connectivity and reliability has become crucial points related to WSNs [4, 5]. In this paper, Ef is defined as the number of received messages by the master node (MN) in relation to the estimated number of

References

[1]  I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–105, 2002.
[2]  A. Bhrathidasan and V. A. S. Ponduru, “Sensor networks: an overview,” IEEE Potentials, vol. 22, no. 2, pp. 20–23, 2003.
[3]  A. R. Pinto, M. Camada, M. A. R. Dantas, C. Montez, P. Portugal, and F. Vasques, “Genetic machine learning algorithms in the optimization of communication efficiency in wireless sensor networks,” in Proceedings of the 35th Annual Conference of the IEEE Industrial Electronics Society (IECON '09), pp. 2448–2453, November 2009.
[4]  S. Panichpapiboon, G. Ferrari, and O. K. Tonguz, “Optimal transmit power in wireless sensor networks,” IEEE Transactions on Mobile Computing, vol. 5, no. 10, Article ID 1683791, pp. 1432–1446, 2006.
[5]  F. Wang, M. T. Thai, Y. Li, X. Cheng, and D. Z. Du, “Fault-tolerant topology control for all-to-one and one-to-all communication in wireless networks,” IEEE Transactions on Mobile Computing, vol. 7, no. 3, pp. 322–331, 2008.
[6]  C. A. Boano, Z. He, Y. Li, T. Voigt, M. Zuniga, and A. Willig, “Controllable radio interference for experimental and testing purposes in wireless sensor networks,” in Proceedings of the 4th International Worshop on Pratical Issues in Building Sensor Network Applications (SenseApp '09), 2009.
[7]  F. Lavratti, A. R. Pinto, D. Prestes, L. Bolzani, F. Vargas, and C. Montez, “Towards a transmission power self-optimization in reliable wireless sensor networks,” in Proceedings of the 11th Latin-American Test Workshop (LATW '10), March 2010.
[8]  F. Lavratti, A. R. Pinto, L. Bolzani et al., “Evaluating a transmission power self-optimization technique for WSN in EMI environments,” in Proceedings of the 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools (DSD '10), pp. 509–515, September 2010.
[9]  J. A. Stankovic, T. F. Abdelzaher, C. Lu, L. Sha, and J. C. Hou, “Real-time communication and coordination in embedded sensor networks,” Proceedings of the IEEE, vol. 91, no. 7, pp. 1002–1022, 2003.
[10]  J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36, no. 1, pp. 41–50, 2003.
[11]  XBee/XBee-PRO OEM RF Modules, http://www.digi.com.
[12]  IEEE 802.15.4 Standard Specification, 2009, http://www.ieee802.org/15/pub/TG4.html.
[13]  Electromagnetic Compatibility (EMC)—part 4-29: Testing and measurement techniques—Voltage dips, short interruptions and voltage variations on d.c. input power port immunity tests (1st Edition) Normative, 2000–2008, http://www.iec.ch.
[14]  F. Vargas and D. P. Prestes, “Conducted electromagnetic noise generator for testing integrated circuits,” Patent INPI number PI0705324-0 INPI, 2007, http://www.inpi.gov.br.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133