全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Experimental Performance Evaluation of POBICOS Middleware for Wireless Sensor Networks

DOI: 10.5402/2012/180369

Full-Text   Cite this paper   Add to My Lib

Abstract:

The advances in the theory of wireless sensor networks have been remarkable during the past decades, but there is a lack of extensive experimental evaluations. In this paper we present performance-evaluation methods and results for POBICOS (platform for opportunistic behaviour in incompletely specified, heterogeneous object communities), which is an advanced middleware for wireless sensor networks (WSNs). The measurements concern energy consumption, duty cycle, and OS task profiling as well as communication characteristics such as round trip time (RTT) and throughput. In addition, a bandwidth analysis during a long-term experiment of fully functional POBICOS network and application is studied. Based on the evaluation results, power mode and data cache improvements are presented as well as CPU clock frequency optimizations. 1. Introduction The research done in the field of WSNs has advanced a lot in the past decades. The achieved performance of a WSN implementation is inevitably tied to the characteristics of the used platform, and therefore, the performance evaluation cannot rely solely on the theoretical background. Our study presents an experimental performance evaluation of POBICOS which is an advanced opportunistic WSN middleware implemented on TinyOS operating system and Imote2 hardware platform. The performance evaluation methods and results are related to energy consumption, duty cycle, and OS task profiling as well as communication characteristics such as round trip time and throughput. In addition, a bandwidth analysis during a long-term experiment of fully functional POBICOS network and application is included. Based on the evaluation results, power mode and data cache improvements are presented as well as CPU clock frequency optimizations. Energy consumption of battery-powered sensor motes is a very crucial implementation issue which affects the operational costs of the WSN. The energy consumption is mainly affected by the achieved duty cycle and power modes of the motes. The overall operational energy consumption of the motes may be obtained through online energy consumption monitoring or through a hybrid method, in which the results of offline energy consumption measurements and online duty cycle monitoring are combined. The duty cycle investigation is based on CPU usage monitoring which, in case of the Imote2 platform, can be implemented through performance monitoring unit (PMU) events. The duty cycle optimization can be achieved through monitoring the CPU usage of each running task with a task profiler. This usually requires modifications

References

[1]  http://www.ict-pobicos.eu/.
[2]  A. Pruszkowski, T. Paczesny, and J. Domaszewicz, “From C to VM-targeted executables: techniques for heterogeneous sensor/actuator networks,” in 8th IEEE Workshop on Intelligent Solutions in Embedded Systems (WISES '10), pp. 61–66, July 2010.
[3]  N. Tziritas, T. Loukopoulos, S. Lalis, and P. Lampsas, “Agent placement in wireless embedded systems: memory space and energy optimizations,” in IEEE International Symposium on Parallel and Distributed Processing, Workshops and Phd Forum (IPDPSW '10), 2010.
[4]  P. Tarvainen, M. Ala-Louko, M. Jaakola et al., “Towards a lightweight security solution for user-friendly management of distributed sensor networks,” in 9th International Conference on Next Generation Wired/Wireless Networking, and 2nd Conference on Smart Spaces, S. Balandin, D. Moltchnov, and Y. Koucheryavy, Eds., vol. 5764 of Lecture Notes in Computer Science, pp. 97–109, September 2009.
[5]  A. R. L. Ribeiro, L. C. Freitas, C. R. L. Francês, and J. C. W. A. Costa, “Middleware performance evaluation in wireless sensor networks,” in International Telecommunications Symposium (ITS '06), pp. 207–212, September 2006.
[6]  A. Santos, A. Cardoso, and P. Gil, “Poster abstract: a case study on performance enhancement in WSN using Contiki OS,” in European Conference on Wireless Sensor Networks (EWSN ’10), 2010.
[7]  M. Bertocco, G. Gamba, A. Sona, and S. Vitturi, “Experimental characterization of wireless sensor networks for industrial applications,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 8, pp. 1537–1546, 2008.
[8]  K. E. Tepe, P. R. Casey, and N. Kar, “Design and implementation of a testbed for IEEE 802.15.4 (Zigbee) performance measurements,” EURASIP Journal on Wireless Communications and Networking, vol. 2010, Article ID 103406, 2010.
[9]  W. T. H. Woon and T.-C. Wan, “Performance evaluation of IEEE 802.15.4 wireless multi-hop networks,” International Journal of Ad Hoc and Ubiquitous Computing, vol. 3, no. 1, pp. 57–66, 2008.
[10]  S. Rost and H. Balakrishnan, “Memento: a health monitoring system for wireless sensor networks,” in 3rd Annual IEEE Communications Society on Sensor and Ad hoc Communications and Networks (SECON ’06), pp. 575–584, September 2006.
[11]  N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and D. Estrin, “Sympathy for the Sensor Network Debugger,” in 3rd International Conference on Embedded Networked Sensor Systems (SenSys ’05), 2005.
[12]  M. C. Zheng, “An automatic approach to verify sensor network systems,” in 4th IEEE International Conference on Secure Software Integration and Reliability Improvement Companion (SSIRI-C '10), pp. 7–12, June 2010.
[13]  M. K. Watfa and M. Moubarak, “Building performance measurement tools for wireless sensor network operating systems,” in 7th International Conference on Advances in Mobile Computing and Multimedia (MoMM '09), pp. 599–604, December 2009.
[14]  R. Fonseca, P. Dutta, P. Levis, and I. Stoica, “Quanto: tracking energy in networked embedded systems,” in 8th USENIX conference on Operating systems design and implementation (OSDI '08), 2008.
[15]  P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler, “Energy metering for free: augmenting switching regulators for real-time monitoring,” in International Conference on Information Processing in Sensor Networks (IPSN '08), pp. 283–294, April 2008.
[16]  G. Contreras and M. Martonosi, “Power prediction for intel XScale? processors using performance monitoring unit events,” in International Symposium on Low Power Electronics and Design (ISLPED ’05), pp. 221–226, August 2005.
[17]  M. Calle and J. Kabara, “Measuring energy consumption in wireless sensor networks using GSP,” in 17th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '06), September 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133