The design concept of passive and active reconfigurable reflectarray antennas has been proposed and tested. The antenna elements in the array are identical hollowed patches. In the first phase of study the slots are loaded with a SMD capacitor to set the required phase shift needed for array implementation. Simulations show promising results. Mounting a SMD capacitor in such a configuration can be considered as the first step in using capacitive loading on a slotted patch for active microstrip reflectarrays. It is shown that by adjusting the capacitance values it is possible to scan the beam. In the second phase, the patch elements are loaded with active varactor-diode device which its reflected phase can be varied. This phase alteration is based on the variation of the diode capacitance which can be achieved by varying the biasing voltage of the active varactor device. In latter approach by activating these varactor devices, the phase of each antenna element in the array configuration can be adopted dynamically and consequently, its beam direction can be reconfigured. The reflectarrays incorporating passive and active elements have been built and tested at 7.0?GHz and 6.0?GHz, respectively. The performance of the proposed reconfigurable antennas is excellent, and there is good agreement between the theoretical and measurement results which pioneers design of arbitrarily reconfigurable antennas. 1. Introduction In the past decade the research and development on analytical and experimental techniques for Microstrip ReflectArray (MRA) antennas have received a considerable attention. This is due to the their low-cost production, low-weight, and very thin flat leading to a excellent alternative to the traditional reflector antennas. The main objective of recent studies is the development of active reflectarrays. In this paper the passive and active phase shifting techniques for hollowed microstrip antenna elements loaded with Surface Mounted Device (SMD) capacitor and varactor-diode device, respectively, are addressed. There are different types of phasing techniques reported in the literature: stubs [1, 2], where patch antenna elements are loaded with different stubs length, rotation [3], where patch antenna elements are rotated, and variable size [4, 5], where the resonance length of the antenna is adjusted. These conventional methods require alternation of the patch elements geometry in an array. The phase shift technique proposed in this paper is capacitive loading. The antenna element is hollowed patch antenna [6]. The passive and active phasing
References
[1]
R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Transactions on Antennas and Propagation, vol. 43, no. 9, pp. 932–939, 1995.
[2]
M. Hajian, A. Coccia, and L. P. Ligthart, “Design, analysis and measurements of reflected phased array antennas at Ka-band using passive stubs,” in Proceedings of the European Conference on Antennas and Propagation (EuCAP '06), Nice, France, 2006.
[3]
J. Huang and R. J. Pogorzelski, “A ka-band microstrip reflectarray with elements having variable rotation angles,” IEEE Transactions on Antennas and Propagation, vol. 46, no. 5, pp. 650–656, 1998.
[4]
D. M. Pozar, S. D. Targonski, and H. D. Syrigos, “Design of millimeter wave microstrip reflectarrays,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 2, pp. 287–296, 1997.
[5]
M. Hajian and N. F. Kiyani, “Design, analysis and measurements of reflectarray using variable length microstrip patch antennas at Ka-band,” in Proceedings of the 18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC ’07), Athens, Greece, 2007.
[6]
C. Trampuz, M. Hajian, and L. P. Ligthart, “Design, analysis and measurements of reflected phased array microstrip antennas at Ka-band, using hollow phasing,” in Proceedings of the 36th European Microwave Conference Proceedings (EURAD '06), pp. 57–60, Manchester, UK, 2006.
[7]
K. Buisman, L. C. N. De Vreede, L. E. Larson et al., “Low-distortion, low-loss varactor-based adaptive matching networks, implemented in a silicon-on-glass technology,” in Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC '05), pp. 389–392, June 2005.
[8]
K. Buisman, L. C. N. De Vreede, L. E. Larson et al., ““Distortion-free” varactor diode topologies for RF adaptivity,” in Proceedings of the IEEE MTT-S International Microwave Symposium, pp. 157–160, June 2005.
[9]
D. Sievenpiper, J. Schaffner, R. Loo, G. Tangonan, S. Ontiveros, and R. Harold, “A tunable impedance surface performing as a reconfigurable beam steering reflector,” IEEE Transactions on Antennas and Propagation, vol. 50, no. 3, pp. 384–390, 2002.
[10]
J. P. Gianvittorio and Y. Rahmat-Samii, “Reconfigurable patch antennas for steerable reflectarray applications,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 5, pp. 1388–1392, 2006.
[11]
C. won Jung, M. J. Lee, G. P. Li, and F. De Flaviis, “Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches,” IEEE Transactions on Antennas and Propagation, vol. 54, no. 2, pp. 455–463, 2006.
[12]
M. Riel and J. J. Laurin, “Design of an electronically beam scanning reflectarray using aperture-coupled elements,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 5, pp. 1260–1266, 2007.
[13]
M. Hajian, Passive and Active Reconfigurable Microstrip Reflectarray Antennas, Delft University of Technology, 2007.
P. Blondy, C. Champeaux, P. Tristant et al., “Applications of RF MEMS to tunable filters and matching networks,” in Proceedings of the International Semiconductor Conference, pp. 111–116, October 2002.
[16]
J. T. M. van Beek, M. H. W. M. van Delden, A. van Dijken et al., “High-Q integrated RF passives and micro-mechanical capacitors on silicon,” in Proceedings of the BIPOLAR/BICMOS Circuits and Technology Meeting, pp. 147–150, September 2003.
[17]
J. van Beek and M. van Delden, “Realization of high tunability barium strontium titanate thin films by RF magnetron sputtering,” Applied Physics Letters, vol. 75, no. 20, pp. 3186–3188, 1999.
[18]
K. Buisman, L. C. N. de Vreede, L. E. Larson, et al., “A monolithic low-distortion low-loss silicon-on-glass varactor-tuned filter with optimised biasing,” Microwave and Wireless Components Letters, vol. 17, no. 1, pp. 58–60, 2007.
[19]
B. Kuijpers and M. Hajian, “Development of active microstrip reflectarray antennas using capacitive loading on a slotted patch,” Internal report IRCTR-A-006-06, Delft, The Netherlands, 2006.
[20]
W. C. Till and J. T. Luxon, Integrated Circuits: Materials, Devices and Fabrication, Prentice Hall, 1982.